Cevap 1)
$\ell$ bir çift sayı olmak üzere hatta
$\ell=2^n$ gibi bir sayı
$a^n-1=(a^{n/2}-1)(a^{n/2}+1)=(a^{n/4}-1)(a^{n/4}+1)(a^{n/2}+1)$ diye diye uzanıyor ve sezebiliyoruz.
dolayısıyla $a^n-1=\left[a^{^{\frac{n}{\ell}}}-1\right]\left[\displaystyle\prod_{k=1}^{log_2\ell}(a^{^{\frac{n}{2^k}}}+1)\right]=(a^{^{\frac{n}{\ell}}}-1)(a^{^{\frac{n}{\ell}}}+1)(a^{^{\frac{2n}{\ell}}}+1)(a^{^{\frac{4n}{\ell}}}+1)......(a^{^{\frac{n}{2}}}+1)$
zarif bir denklem.