Türevde Bölme Kuralı İspatı-Ezber bozuyoruz-3-

0 beğenilme 0 beğenilmeme
3,572 kez görüntülendi


$\zeta(z)=\dfrac{u(z)}{g(z)}$


İspatlayalım $\zeta'(z)=\dfrac{u'(z)g(z)-u(z)g'(z)}{g(z)^2}$

31, Mart, 2016 Lisans Matematik kategorisinde Anil (7,729 puan) tarafından  soruldu
28, Mart, 28 alpercay tarafından düzenlendi

$f=\dfrac {ax+b} {cx+d}$ Şeklinde bir f fonksiyonu varsa kısayoldan türevi:




$f'\left( x\right)$ = $\dfrac {\left| \begin{matrix} a& b\\ c& d\end{matrix} \right| } {\left( cx+d\right) ^{2}}$

Soru bu bilgiden farkli. Cevap olarak paylasilmamali bence.

1 cevap

0 beğenilme 0 beğenilmeme

 
$u(x)=\dfrac{f(x)}{g(x)}$                      $g(x)=\not 0$  ($g(x)\neq 0$)

$u(x+\Xi)=\dfrac{f(x+\Xi)}{g(x+\Xi)}$

-----------------------------------------------------------------------------------------------

$u(x)$ deki değişim;

$\triangle u(x)=\dfrac{f(x+\Xi)}{g(x+\Xi)}-\dfrac{f(x)}{g(x)}$  düzenlersek

$\triangle u(x)=\dfrac{f(x+\Xi).g(x)-f(x).g(x+\Xi)}{g(x).g(x+\Xi)}$

-----------------------------------------------------------------------------------------------



amacımız    $\lim_{\Xi\rightarrow 0}\dfrac{\triangle u(x)}{\Xi}=u'(x)=\dfrac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}$  olduğunu göstermek.


-----------------------------------------------------------------------------------------------

Lafı fazla uzatmadan ;

$\lim_{\Xi \rightarrow 0}\dfrac{1}{g(x).g(x+\Xi)}=\dfrac{1}{g(x)^2}$ dir




$\lim_{\Xi \rightarrow 0}\dfrac{\triangle u(x)}{\Xi}=\left[\lim_{\Xi \rightarrow 0}\dfrac{f(x+\Xi)}{\Xi}.g(x)-\lim_{\Xi \rightarrow 0}\dfrac{g(x+\Xi)}{\Xi}.f(x) \right].\left(\dfrac{1}{g(x)^2}\right)$



$\lim_{\Xi \rightarrow 0}\dfrac{\triangle u(x)}{\Xi}=\dfrac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}$

  

ispatlanır $\Box$

11, Nisan, 2016 Anil (7,729 puan) tarafından  cevaplandı

Notasyonlar beni óldúrúyor :)

Ezberleri bozuyoruz sevgili hocam:)

Bu ezber bozmak degil, duzen bozmak :)

kendinizi bir dahaki notasyona hazırlayın :) bu arada hocam inceliyorsunuz demi hatalarım varsa düzeltiniz. Mesela zincir kuralında DoğanDönmez hocamızın dediği ihtimalde çok farklı bir ispat olabilirmiş sizin fikriniz nedir?

Okuyamiyorum iste :) Soyle dusun, ben bu senin binom sorunda acaip notasyonlar kullandim, anlamayan daha beter anlamayacak. Genel notasyon olunca insan bakarken, haa ben buna asinayim deyip anlama ve okuma istegi artar. Sonunda anlamasa bile bi okumaya calisir. Aman yeni notasyon turetme :)

tamam birdahakine söz h, ama bu notasyon değişikliği insana bazı ezberlediği şeyleri sorgulamasını sağlıyor o yönden faydalı.

...