Yukarıda y2=x eğrisi ile x=−1 ve y=1 doğrularının grafiği verilmiştir.
Taralı bölgenin x=−1 doğrusu etrafında 360 derece döndürülmesi ile oluşan cismin hacmi kaç br3'tür?Cevap:13π15.
Geçen sorduğun disk metodunu uygulayabilirsin. Fakat kabuk yöntemi daha kolay bi çözüm getirebilir.
Hocam o yöntemi kullanmadan yapmaya çalıştım ama olmadı.Yöntemim şuydu:x=-1 doğrusunu 1 birim sağa öteledim y eksenine getirdim.Fonksiyonumuz da f(x)=√x fonksiyonu.Bunu da 1 birim sağa ötelersek f(x−1)=√x−1 fonksiyonu olur.Sonra bu fonksiyon ile y=1 doğrusu arasında kalan bölgeyi y(x=0 doğrusu) ekseni etrafında döndürüp hacmini bulmaya çalıştım.Ama bulamadım.Bu yöntem hatalı mı?
Hocam disk metoduyla cevaba ulaştım ama yukarıda denediğim yöntemle ulaşmaya çalıştığımda yanlış sonuç çıktı.Denediğim yöntem yanlış mı?(Geçen sene buna benzer bir soru çıkmıştı.10 dakika uğraşmıştım ama yapamamıştım..)
Yontem 1 (Disk): π(R2−r2) ∫10π((y2+1)2−12)dyYontem 2 (Kabuk): 2πrh ∫102π(x+1)(1−√x)dx