Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
2.3k kez görüntülendi


Akademik Matematik kategorisinde (1.5k puan) tarafından  | 2.3k kez görüntülendi

nilradikal mi?

hayır nil radikal değil.

tanimi nedir acaba?

Nil ideal: her elemanı nilpotent olan ideal. Nilpotent ideal: İdeal nilpotent yani I nilpotent eğer In=0 olacak şekilde bir n>0 var. Nilpotent ise nil ama tersi doğru değil. örnek bulamadım.

tersi icin su dusunulebilir: 
her nN icin (bazilari icin olmasa da olur ama sonsuza gitsin) bir adet aR var ki an=0 ve an10. Bu da ters ornegi verir.


R olarak da (emin olmamakla beraber) C gibi cebirsel kapali bir cisim uzerinde matris halkasi alinabilir.

Hangi ideali aldık? Matris halkası için pek çok ideal durumu var.
Istedigimiz I ideali icin, 
  • "aI,nN oyle ki an=0" onermesi dogru olmali.
  • "nN,aI oyle ki an=0" onermesi yanlis olmali. 
Sercan'in dediginin aynisi. Bir ornek bulmak icin, bu onermeleri hafifce degistirelim. Oyle bir ideal yazalim ki bir p asal sayisi icin 
  • "aI,nN oyle ki apn=0" onermesi dogru olsun.
  • "nN,aI oyle ki apn=0" onermesi yanlis olsun.

In=0 düşünüldüğünde I idealinin elemanlarının n çarpımının sonlu toplamını anlıyoruz. yani In nin elemanlarını bu gözle değerlendirerek yorum yapmanız mümkün mü?

Bir seyleri yanlis yaptigimi hissetmistim yazarken :) Aklima hep grup ornekleri geliyordu.

Birazdan soyleyecegim seyin buyuk ihtimalle daha guzel bir yazimi var, su an beceremedim guzelce yazmayi:

Herhangi bir cisim uzerinde, her yonde sonsuza kadar uzanan matrislerin olusturdugu bir halka alalim. Bu halkanin uzerinde bir ideal yaratacagiz. Biraz notasyon verirsem daha kolay olacak anlatmam.

D1, diagonalin bir uzerindekiler haric butun girileri sifir olan matrisler,

D2, diagonalin iki uzerindekiler haric butun girileri sifir olan matrisler,

genelde , Dn, diagonalin n uzerindekiler haric butun girileri sifir olan matrisler olsun.

Butun bu Dn'lerin gerdigi ideal istedigimiz sarti sagliyor. Degil mi?

Ahhhh saglamiyor.

Ama bulucam.

Matrisler yerine, sonsuz boyutlu bir vektor uzayinin endomorfizma halkasina bakicam. Bu yorum burada kalsin.

kalsın bakalım. bekliyoruz.

bence Q/Z'yi alabiliriz. ilk aklima o gelmisti de, galiba dogru: 21/n'e denk gelen elemanlara bakarsak isimizi gorur gibi.

k bir cisim, V bir k-vektor uzayi, R=End(V) de V'den V'ye giden dogrusal fonksiyonlarin halkasi olsun.

{en:nN} kumesi V'nin bir bazi olsun.

Tn:VV dogrusal fonksiyonunu soyle tanimlayalim:

Tn(e0)=0Tn(ej)=ej1j=1,2,,n iseTn(ej)=0j>n ise

O zaman, Tnn=0 olur. Ama k<n icin Tkn0'dir. 

Simdi, R icerisinde bu Tn'lerin gerdigi J idealini dusunelim. J aradigimiz ideal olabilir mi?

Ekleme: Bazen matrisler yerine dogrusal fonksiyonlar cinsinden dusunmek daha iyi olabiliyor demek ki. Aradigim, istedigim sey belliydi. Ama istedigim matrisi bulamadim. Istedigim fonksiyonu acik acik yazinca, istedigim matrisin de ilk basladigimdan cok farkli bir sey oldugunu gordum.


Teşekkür ederim. 

Rica ederim! Ben cok sevdim bu soruyu. Ama begenmeyi unutmusum, simdi begeneyim.

3 Cevaplar

1 beğenilme 0 beğenilmeme

Yıllaaaar sonra bir örnek de ben vereyim. :)

            Rp={(¯a1,¯a2,...)¯atZpt ve sonlu t dışında ¯at=0} olsun.

Bu küme bileşensel toplama ve çarpma altında bir halkadır. Halkanın nilpotent elemanları, yani bir k>0 sayısı için k nıncı kuvveti 0 olan elemanların kümesi 

            N={(0,¯a2,¯a3,...,¯an,0,0,...)Rp¯at=¯mtˉp,t=2,3,...,n ve mtZpt}

olup N kümesine nil ideal denir. N kümesini açıklayalım; bir elemanın k nıncı kuvveti sıfır ise tüm bileşenlerin k nıncı kuvveti sıfır olmalı. Bileşenler Zpt de olduğundan bir k>0 sayısı için ¯atk=0 ancak ve ancak ¯at=¯mtˉp.  İlk bileşenin neden sıfır olduğunu görmek zor olmasa gerek.

N kümesi nilpotent ideal mi ? Herhangi bir k>0 sayısı için (0,0,...,0,ˉp,0,0,...) elemanını alalım öyle ki ˉp olan bileşen (k+1) inci bileşen olsun. Rp'nin tanımından  ˉpZpk+1 ve dolayısıyla ˉpk+1=0. Söz konusu  elemanın (k+1) inci kuvveti sıfır olduğundan nilpotent eleman ve N'nin içinde. O halde (0,0,...,0,ˉpk,0,0,...)Nk. Ama ˉpk, (k+1) inci bileşen olup Zpk+1'de sıfıra denk değil.  Her k>0 için Nk da sıfırdan farklı bir eleman bulduk. Demek ki N nilpotent ideal değil.

 

(25 puan) tarafından 
0 beğenilme 0 beğenilmeme

R birimli bir halka, I bir nilpotent (sifirguclu) ideal olsun. Yani In=0 olacak sekilde bir n dogal sayisi var. Sorunun altindaki yorumlarda belirtildigi gibi In ideali, I idealinin n carpiminin sonlu toplamlarinin olusturdugu idealdir. Ozel olarak, her aI icin an=0 oldugunu gorebiliriz. Bu da I'nin bir nil ideal oldugunu gosterir. Yani her nilpotent ideal bir nil idealdir.

(Ustelik, bu kanitimiz sunu da gosterdi: In=0 olacak sekilde bir n dogal sayisi var ise, her aI icin an=0 olur.)

Ote yandan, yine sorunun altindaki yorumlarda yaptigimiz beyin firtinasindan sonra her nil idealin, nilpotent ideal olmak zorunda olmadigini gosteren bir ornek asagidaki gibi verilebilir:

k bir cisim, V bir k-vektor uzayi, R=End(V) de V'den V'ye giden dogrusal fonksiyonlarin halkasi olsun.

{en:nN} kumesi V'nin bir bazi olsun. Bir f dogrusal fonksiyonunu tanimlamak icin, f'nin baz elemanlarina ne yaptigina bakmamiz yeterlidir. Simdi, n>0 icin Tn:VV dogrusal fonksiyonunu soyle tanimlayalim:

Tn(e0)=0Tn(ej)=ej1j=1,2,,n iseTn(ej)=0j>n ise

O zaman, Tnn=0 olur, zira bu fonksiyonu n defa uygularsak her baz elemani 0'a gider. Ama k<n icin Tkn0'dir. Cunku, k adim sonra en elemani, enk elemanina gitmistir. 

Simdi, butun bu Tn fonksiyonlarinin germis oldugu J idealine bakalim. Bu idealdeki bir fonksiyonu, f=a1T1++anTnaik

seklinde gosterebiliriz.

  • Eger j>n ise f(ej)=a1T1(ej)++anTn(ej)=0'dir.
  • Eger j=n ise f(en)=a1T1(en)++anTn(en)=anen1'dir.
  • Eger j=n1 ise f(en1)=a1T1(en1)++anTn(en1)=(an1+an)en2'dir.
  • Eger 1jn  ise f(ej)=(aj+aj+1++an)ej1'dir.
  • Eger j=0 ise f(e0)=a1T1(e0)++anTn(e0)=0'dir.
Yani,
  • f(ej)=0 eger j=0 ya da j>n ise.
  • f(ej)span{ej1} eger 1jn ise.
Bu da gosteriyor ki, f'yi n defa uygularsak butun baz elemanlari 0'a gider. Demek ki fn=0
Yani J bir nil ideal.
Ama! J bir nilpotent ideal degil. Eger oyle olsaydi, yani bir N icin JN=0 olsaydi, ikinci paragrafta parantez icinde tekrar ettigimiz sonuctan oturu, her fJ icin, fN=0 olmasini beklerdik. Ama TN+1J icin TNN+10 cunku TNN+1(eN+1)=e0 .

Demek ki her nilpotent ideal bir nil ideal ama tersi dogru degil. Her nil ideal, nilpotent olmak zorunda degil.

(2.5k puan) tarafından 
0 beğenilme 0 beğenilmeme
Noteryen halkalarda bu ikisi aynı şey olacaktır. O yüzden örnek mecburen noteryen olmayan bir halkadan gelmedi.

 

Mesela k[X1,X2,]/(Xii:iN) halkasinda ¯Xi'ilerin gerdiği ideal nilpotent elemanlar tarafından gerilmiş olsa da, kendisi sıfır güçlü değildir.
(3.7k puan) tarafından 
tarafından düzenlendi
20,312 soru
21,868 cevap
73,589 yorum
2,857,308 kullanıcı