türev integral

7 beğenilme 0 beğenilmeme
171 kez görüntülendi

$f$ iki kere sürekli biçimde türevlenebilir bir fonksiyon olsun. Diyelim ki $$f(a)=f(b)=0$$ ve $$f'(a)=1,f'(b)=0$$ olsun. Bu durumda $$\int_a^b|f''(t)|^2dt\geq \frac{4}{b-a}$$eşitsizliğinin sağlandığını gösterin.

13, Mart, 2016 Akademik Matematik kategorisinde Safak Ozden (3,226 puan) tarafından  soruldu

herkes beğeniyor ama cevap yok ortada:D hocam cevabı sizde varmı "Şafak Özden".

3 kişi beğenmiş altı üstü :)


$g=(x-a)(x-b)^2$ olsun ve Cauchy-Schwarz eşitsizliğini kulanarak $$\Big|\int_a^bf''g''\Big|\leq ||f''||\cdot||g''||$$ eşitsizliğinden bir sonuç çıkartmak gerek. Parçalı integral hesabı yapmak gerekiyor sol taraf için, sağ tarafın bir çarpanı aradığımız değer, diğer çarpan ise bir polinomun integrali. Yani hesaplanabilir.

...