$ [\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}+\frac{1}{1+d^4}](1+a^4+1+b^4+1+c^4+1+d^4)\geq (1+1+1+1)^2$ Cauchy-SB ise $(a^4+b^4+c^4+d^4)\geq 12$ olarak bulunur. $$(a^4+b^4+c^4+d^4)(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}+\frac{1}{d^4})\geq 4^2 \ A.O\geq H.O$$ ise $ (\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}+\frac{1}{d^4})\geq \frac{4}{3}$ olur. Son olarak $G.O \geq H.O$ kullanarak $$\sqrt[4]{a^4.b^4.c^4.d^4} \geq \frac{4}{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}+\frac{1}{d^4}}=3$$ bulunur.