Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
307 kez görüntülendi

$7^{x+5}\equiv 3\left( mod5\right)$ olduğuna göre 3 basamaklı en küçük x sayısı ?


@yorum:standart işlemler yaptım.bişey bulamadım :)

Orta Öğretim Matematik kategorisinde (1.3k puan) tarafından  | 307 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$7^1=2(Mod5)$

$7^2=4(Mod5)$

$7^3=3(Mod5)$

$7^4=1(Mod5)$

$7^5=2(Mod5)$

$7^6=4(Mod5)$

$7^7=3(Mod5)$

Olduğuna göre 3 kalanını veren ifadenin genel denklemi $4k+3$(k doğal sayı) gelir.

$x+5=4k+3$ ise $x=4k-2$ gelir.$k=26$ için en küçük x değerini alır.



(11.1k puan) tarafından 

tam anlayamadım sanki :/

he tamamdır şimdi anladım...7^4=1 buldum

x+5 i 4 e bölerek 3 bırakacaz.

çünkü 7^3=3 e denk.

x te en küçük 102 oluyor=)


tamamdır eyv

20,279 soru
21,810 cevap
73,492 yorum
2,475,776 kullanıcı