Verilen onceki cevaplar dogru fakat ben oyle sebebini hemen goremiyorum.
Sayimiz $abcdef$ olsun. Tabi burada $a \ne 0$ ve $a,b,c,d,e,f$ rakam olmali. Bizden istenen $$\frac{abcdef}{a+b+c+d+e+f}.$$Bu toplamin paydasi hic bir zaman sifir olmaz, bu bilgiye gerek yok ama her zaman bir sayi elde edebilecegiz. Simdi $$\frac{abcdef}{a+b+c+d+e+f}=\frac{10^5a+10^4b+10^3c+10^2d+10e+f}{a+b+c+d+e+f} \leq \frac{10^5(a+b+c+d+e+f)}{a+b+c+d+e+f}=10^5$$ ve esitlik sadece $b=c=d=e=f=0$ icin saglanir. Bunlari gormek basit.
Demek ki $a00000$ sayilari icin oranimi $100000$ ve diger sayilar icin oran bu sayisan daha kucuk.