Cebir 3 - Matematik Kafası

Cebir 3

0 beğenilme 0 beğenilmeme
111 kez görüntülendi

 ∀n∈N için  ¢' de  [En : Q] = n olacak biçimde

bir Ealt  cismi vardır .? Bu sorunun ispatı nedir ?

18, Ocak, 2016 Lisans Matematik kategorisinde Merve Aytemiz (29 puan) tarafından  soruldu
18, Ocak, 2016 DoganDonmez tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

$n=1$ ise $E_1= \mathbb{Q}$ alabiliriz. O halde $n \geq 2$ olduğunu varsayabiliriz. Eisenstien kriteri nedeniyle $f(x)=x^n -2$ polinomu $\mathbb{Q} [x]$ de indirgenemez bir polinomdur. Dolayısıyla

$E_{n}=Q\left( \sqrt[n]{2}\right) $ alınırsa $[E_n,  \mathbb{Q} ]= f $ nin derecesi $ = n$ olur.


19, Ocak, 2016 UnluYusuf (525 puan) tarafından  cevaplandı
<p> Teşekkür ederim nasıl yapılacağını anlayamamıştım.
</p>

$n=1$ için de $x-2$ (saçma olsa da) alınabilir. Aslında ikiye ayırmaya gerek yok.

...