Bir fonksiyonun ve tersinin integrallerinin eşit olduğu bir durum.

5 beğenilme 0 beğenilmeme
111 kez görüntülendi

$f,\ [0,a]$ kapalı aralığında sürekli, kesin

azalan ve ${f(0)=b,f(a)=0}$ olacak şekilde bir fonksiyon olsun.

O zaman $\displaystyle \int_0^af(x)\ dx=\int_0^b f^{-1}(x)\ dx$

olduğunu gösterin.

18, Ocak, 2016 Lisans Matematik kategorisinde DoganDonmez (3,282 puan) tarafından  soruldu

2 Cevaplar

2 beğenilme 0 beğenilmeme

Wikipedia'dan asagidaki ilk resmi aldim. Sekilde $f$ fonksiyonu artan, fakat anlasilmasi icin koyuyorum. Eger bu azalan olursa sekil ikinci resme benzer olur. Bu soruda sunu deriz: ha alani $x$'e gore taramisiz, ha $y$'ye gore. Olay bu kadar basit.

Eger $a,b,c,d\geq0$ olacak sekilde ilki gibi alanimizi cizersek, fonksiyon $[a,b]$ araliginda azalan olsun, $f(a)=c$ ve $f(b)=d$ olsun.  Eger $(b-a)f(b)=(f(a)-f(b))a$ (yani $(b-a)d=(c-d)a$) olursa (ki soruda da bu saglaniyor) $x$'e gore taramak ile $y$'ye gore taramak arasinda bir fark olmaz. Aslinda yukaridaki esitlik sadece dikdortgenlerin alanlarinin esitligi. 

image

image


18, Ocak, 2016 Sercan (22,513 puan) tarafından  cevaplandı

Bunun bir nedeni de fonksiyonla tersinin (eger varsa) her zaman $y=x$  dogrusununa gore simetrik olmasidir.


image

3 beğenilme 0 beğenilmeme

Analiz ile İspatı: 

Belirsiz İntegral tanımından ($\int f(x)\,dx=F(x)+C$ olmak üzere):  $$\int f^{-1}(x)\ dx=xf^{-1}(x)-F(f^{-1}(x))+C$$olduğu kolayca görülür. Diferansiyel-İntegral Hesabın Temel Teoremini kullanarak

$$\int_0^b f^{-1}(x)\  dx=\left.xf^{-1}(x)\right\vert_0^b-\left.F(f^{-1}(x))\right\vert_0^b=F(a)-F(0)=\int_0^af(x)\ dx$$elde  edilir.

18, Ocak, 2016 DoganDonmez (3,282 puan) tarafından  cevaplandı

Aslında burada örtülü olarak $f^{-1}$ in türevlenebildiği varsayımı var ama o olmadan da doğru olacağı Sercan ın çözümündeki gibi bir şekilden (veya integral tanımdan) gösterilebilir.

güzel çözüm ama kendim nasıl yaparım diye denedim, 1. eşitlik olan

$\displaystyle\int f^{-1}(x).dx=x.f^{-1}(x)-F(f^{-1}(x))+C$  'ı yapamadım


$f(x)=y$ gibi düşünüp sol tarafı $\displaystyle\int f^{-1}(x).dx=\displaystyle\int x.dx=x^2/2+C$ yaptım

sağ taraf ise;

$x.f^{-1}(x)-F(f^{-1}(x))+C=x^2-F(x)+C$  oldu ve eşitledim.

$\displaystyle\int x.dx=\dfrac{x^2}{2}=x^2-F(x)+C$     dedim   eşitliği görmek için türev aldım

$x=2x-F'(x)$                ($\int f(x)dx=F(x)+C$) varsayımınızdan ötürü

$x=f(x)$ buldum (ve tabiki hatalı)

$-----------------------$

2.denememde bunlara girmeden ;

$\displaystyle\int f^{-1}(x).dx=x.f^{-1}(x)-F(f^{-1}(x))+C$  bu ıfadenın turevını aldım

$f^{-1}(x)=f^{-1}(x)+x(f^{-1}(x))'-F'(f^{-1}(x)).(f^{-1}(x))'$ oldu ve düzenledim;


$x(f^{-1}(x))'=F'(f^{-1}(x)).(f^{-1}(x))'$          hertarafı  $(f^{-1}(x))'$'a bölüp sadeleştirebilir miyiz? evet ise devam ediyorum sadeleştirip;

$x=F'(f^{-1}(x))$ burada ne yapmam gerektiğini bilmiyorum.

$\int f(x)dx=F(x)+C$ tamam ama 

$\int f^{-1}(x)dx$'in F cinsinden eşiti nedir?

$\int f(x)\,dx=F(x)+C$ olması $F'(x)=f(x)$ demektir

$\begin{eqnarray} & &\frac{d}{dx}\left(xf^{-1}(x)-F(f^{-1}(x))+C\right)\\ &=& f^{-1}(x)+x(f^{-1})'(x)-F'(f^{-1}(x))\cdot (f^{-1})'(x)\\ &=&f^{-1}(x)+x(f^{-1})'(x)-f(f^{-1}(x))\cdot (f^{-1})'(x)\\ &=&f^{-1}(x)+x(f^{-1})'(x)-x\cdot (f^{-1})'(x)=f^{-1}(x)\end{eqnarray}$


$F'(f^{-1}(x))=f(f^{-1}(x))$  demekten şüphe etmiştim bu eşitlik her zaman sağlanır mı? ilginiz çok teşekkür ederim iyi günler sayın Hocam.

...