Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
578 kez görüntülendi

$x,y\in Z^{+}$

"x" in 95 ile bölümünden kalan $y^{3}$ ve bölüm y dir.

yani: $x=95\times y+y^{3}$ olan bir bölme işleminde 

$x+y$ nin en küçük ve en büyük değerler toplamı kaçtır ?



Benim çözüm denemem:

$y^3<95$ olmalı dedim.

$x+y4$ en küçük değeri $y=1$ olursa dedim ve;

$y=1$;

$x=95.1+1=96$

en küçük $x+y=96+1=97$

en büyük $x+y$ için ;

$y=4$ dedim.

$y=4;$

$x=95.y+64=444$

$x+y=444+4=448;$

E.B $x+y =448$

E.K $x+y =97$

toplamı:545;


Orta Öğretim Matematik kategorisinde (36 puan) tarafından 
tarafından düzenlendi | 578 kez görüntülendi

$95\times y$ bölen olamaz mı?  

soruda bölen $y$ zaten $y^3$ de kalan cevap oldu mu bilmiyorum ama. Bu arada sorunun cevabı 540 diyor.

$2^{+}$  yerine $Z^{+} $  olmalıydı.

eyvallah onu da düzelttim soru için ne diyorsunuz ben nerde yanlış yapmışım? suitable2015

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Bana göre bulduğun sonuç doğru, x, y nin  doğal sayı olması istenmiş.

max için

$y^3=64, y=4, x=4*95+64=380+64=444, x+y=444+4=448,$

min için

$y^3=1, y=1, x=95*1+1^3=96, x+y=96+1=97$

Cevap 448+97= 545  bulunur.

Test kitabının doğru - yanlış cetveline bak.

(3.9k puan) tarafından 
tarafından seçilmiş

doğru yanlış cetveli diye bir şey yok malesaf ya yanlış diyor şıklarda 545 var ama 540 diyor cevabına. sende böyle diyorsan şıkkı yanlış vermişler herhalde. teşekkür ederim. :)

20,284 soru
21,823 cevap
73,508 yorum
2,570,354 kullanıcı