Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
670 kez görüntülendi

İngilizce'den Türkçe'ye çevrilmiştir:

Kaynak: http://people.okanagan.bc.ca/clee/bcssmc/2015/SeniorFinalA&B2015_Apr28.pdf

P, denklemi y=x2 olan parabol, ve Q(20,14) olsun. 

r ve s sayıları vardır, öyle ki, ancak ve ancak  r<m<s iken, 

Q 'dan geçen, eğimi m olan doğru, P ile kesişmez. 

r ve s 'nin değerlerini belirleyiniz. 

Orta Öğretim Matematik kategorisinde (3.9k puan) tarafından  | 670 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Parabol ile doğrunun kesişmemesi için, eşitikliklerin reel sayılarda çözümü olmaması gerekir.

Q(20,14)'dan geçen ve eğimi m olan doğru denklemi

y14=m(x20)y=mx+1420m

Parabol ve doğru denklemini eşitleyelim:

y=x2=mx+1420mx2mx14+20m=0Δ<0 olmalıdır.Δ=b24ac=m280m+56<0402386<m<40+2386r=402386s=40+2386

Soruda r+s sorulmuş.

r+s=80

(4.6k puan) tarafından 
tarafından seçilmiş

Çözüm yolu doğru, deltasına bakılacak denklemde 

ve sonrasındaki hataları  düzeltir misiniz?


Eşitliği düzenlerken, işaretler karışmış.

Çözümü düzelttim.

Cevap doğru. Kökten önceki 2 eksik.

402386<m<40+2386 olmalıydı.

20,313 soru
21,868 cevap
73,590 yorum
2,864,888 kullanıcı