Kuantum mekaniğinde bağdaşık durumlar

1 beğenilme 0 beğenilmeme
41 kez görüntülendi

Burada genelliği kaybetmeden $\hbar=1$ (fiziksel açıdan önemli)...

Tanım: $\vec{p},\vec{q}\in \mathbb{R}^3$,   $x:=(\phi,\sigma)$ ve $g\in H^1(\mathbb{R}^3)$ (Sobolev uzayı) gerçel, küresel simetrik yani $|| g ||=1$ için $\vert f_{\vec{p},\vec{q},\tau}>\equiv f_{\vec{p},\vec{q},\tau}:=e^{i\vec{p}\phi}g(\phi-\vec{q})\delta_{\sigma,\tau}$ şeklindeki durumlara bağdaşık (ing. coherent) durumlar denir.

Not: $g$ uygun bir Gauss fonksiyonu olduğunda, bu durumlar için belirsizlik ilkesi eşitsizliği (Born Jordan değişme bağıntısı ile ilgili) alt sınır değerini alıverir (Kennard sınırı). Böylece  kuantum mekaniğindeki en klasik durumlar bağdaşık durumlardır.

Soru 1: Nottaki savı kanıtlayabilirmisiniz?

Teorem: $h:\mathbb{R}^6\rightarrow \mathbb{R}$ (sistemin Hamiltonyeni),

1) $ l,u\in \mathbb{R}$ için $l\leq h(\vec{p},\vec{q})\leq u$ olsun. O zaman $l<\int h(\vec{p},\vec{q})\vert f_{\vec{p},\vec{q},\tau}><f_{\vec{p},\vec{q},\tau}\vert \frac{1}{(2\pi)^3}d\vec{p}d\vec{q}\leq u$ ($<f_{\vec{p},\vec{q},\tau}\vert;  \vert f_{\vec{p},\vec{q},\tau}>$'nin eşleği olarak tanımlanır.)

2) $H:=\vert f_{\vec{p},\vec{q},\tau}><f_{\vec{p},\vec{q},\tau}\vert h(\vec{p},\vec{q})$ işlemcisi için: $\text{iz}H=\frac{1}{(2\pi)^3}q\int  h(\vec{p},\vec{q}) d\vec{p}d\vec{q}$.

Soru 2: Teoremi kanıtlayabilirmisiniz?

Örnek: Lazer ışığındaki fotonların durumları bağdaşıktır.

19, Aralık, 2015 Lisans Matematik kategorisinde fiziksever (1,140 puan) tarafından  soruldu

bagdaşıklıktan tam kastınız nedir hocam

Klasik olarak bağdaşıklık, dalgaların yer değişiminin zamanda en fazla sabit bir faz eklentisi kadar farkedecek şekilde değişmesi. Kuantum mekanikte tanımı soruda yazılmış bağdaşık durumlar üzerinden.

tam tanım mı diye merak ettim,emin oldum, anladım hocam teşekkürler.

...