$f(f(x))=-x$ oluşundan $f$ nin 1-1 olduğu aşikardır. Analiz derslerinde (Matematik bölümlerinde) ($\mathbb{R}$ den $\mathbb{R}$ ye) 1-1 ve sürekli fonksiyonların monoton olduğu ispatlanır. Öyleyse $f$, ya artan ya da azalan bir fonksiyondur. $f$ artan ise $f\circ f$ de artandır, $f$ azalan ise $f\circ f$ yine artandır (ispatı çok kolay, okuyucu bunu göstermeyi denemelidir). Yani her iki durumda da $f\circ f$ artandır, ama, $-x$ azalan bir fonksiyon!