$0 \ne f(x) \in \mathbb Z[x]$ birim eleman olsun, bu durumda bir adet $g(x) \in \mathbb Z[x]$ vardir ki $f(x)g(x)=1$ olsun. $x \in \mathbb Z[x]$ askin bir eleman oldugundan bu durum sadece $f(x) \in \mathbb Z$ icin dogru olabilir. (Derecelerden oturu).
$\mathbb Q[x]$ icin de aynisi gecerli. Yani kisacasi $\mathbb Z$ ve $ \mathbb Q$ icerisindeki birimleri bulmaliyiz.
$ \mathbb Z$ halkasinin birimleri $\{\pm1\}$, $\mathbb Q$ ise bir cisim.
Duzenleme/Ekleme: Yukarida $\mathbb Z$ ve $\mathbb Q$'nun tamlik bolgesi oldugunu da kullanmak gerekir. Carparken derecelerin azalmayacagini garantilemek icin.