Başlangıç noktası dışında kalan düzlem bölgesinde $\omega=\frac {-y}{x^2+y^2}\,dx+\frac x{x^2+y^2}\,dy$ formunun bu bölgede kapalı olduğunu, ama bu bölgede tam form olmadığını gösterin. Buna karşın, $f(x,y)=\arctan\frac yx$ için $df=\omega$ eşitliğini açıklayın.

3 beğenilme 0 beğenilmeme
96 kez görüntülendi


2, Kasım, 2015 Lisans Matematik kategorisinde DoganDonmez (3,158 puan) tarafından  soruldu
6, Kasım, 2015 DoganDonmez tarafından yeniden kategorilendirildi

Bu soru iki sene once tam Kasim ayinin baslarinda bir odev sorusu olarak karsima cikmisti yine. O zaman anlamamistim, hala anlamiyorum cevabi. Guzel bir cevap icin bekleyecegim.

ben neden akademik oldugunu anlamadim bilgisizlikten, o yuzden bekleyecegim guzel bir cevap icin.

Akadamik ile Lisans arasında karasız kalmıştım. Lisans da olabilir aslında.

1 cevap

0 beğenilme 0 beğenilmeme

1. $\frac{\partial}{\partial x}\left(\frac x{x^2+y^2}\right)=\frac{y^2-x^2}{(x^2+y^2)^2}=\frac{\partial}{\partial y}\left(\frac {-y}{x^2+y^2}\right)$ olduğundan kapalı bir formdur.

2. $df=\omega$ olacak şekilde ($B=\mathbb{R}^2\setminus\{(0,0)\}$ nin tamamında tanımlı) bir $f(x,y)$ fonksiyonunun var olduğunu varsayalım. $x=\cos t,\ y=\sin t$ olsun,   ($\forall t\in\mathbb{R},\ (x(t),y(t))\in B $). $z=f(x,y)$ olmak üzere $z,\ t$ nin (bileşik) fonksiyonu olur. Zincir kuralından $\frac{dz}{dt}=\frac{\cos t}{\cos^2 t+\sin^2 t}(\cos t)+\frac{-\sin t}{\cos^2t+\sin^2t}(-\sin t)=1$ bulunur . Öyleyse $z(t)=t+C$ şeklinde olmalıdır. Ama $z(0)=f(\cos0,\sin0)=f(\cos2\pi,\sin2\pi)=z(2\pi)$ çelişki.

 (Bu kısım, eğrisel integraller kullanarak da ispat edilebiliyor)

3. (kısaltmalardan sonra) $\frac\partial{\partial x}(\arctan \frac yx)=\frac{-y}{x^2+y^2},\ \frac\partial{\partial y}(\arctan \frac yx)=\frac{x}{x^2+y^2}$ ama $\arctan\frac yx$, $y$-ekseni boyunca tanımlı değil(dolayısıyla $B$ nin tamamında tanımlı değil)

4, Kasım, 2015 DoganDonmez (3,158 puan) tarafından  cevaplandı
Kapali ve tam formlar ve de kohomoloji
Tesekkurler. Ben bu trigonometrik fonksiyonlari isin icine katmayi dusunmemistim sanirim hic.
...