$\sum_{k=1}^{n}k^5$ toplaminin sade hali nedir?

0 beğenilme 0 beğenilmeme
202 kez görüntülendi

$\sum_{k=1}^{n}k^5$ toplaminin sade hali nedir?

sade hal derken: $\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$.

Bunu genellestirdigimizde 

$a \geq 1$ icin $\sum_{k=1}^{n}k^a$ toplaminin sade hali nedir? Ya da bunu elde edebilecegimiz bir tumevarim yontemi? ilk olarak, tamsayi $a$'lar ve varsa eger tum reel sayilar icin..

7, Mart, 2015 Lisans Matematik kategorisinde Sercan (23,208 puan) tarafından  soruldu

Conway & Guy'in The Book of Numbers  adli kitabinda Umbral Calculus kullanarak bu tur toplamlari Bernoulli sayilari cinsinden ifade eden -yanilmiyorsam 3 sayfalik- oldukca kolay anlasilir bir kisim var.

$a$ sayisi tam sayi olmadigi zaman hakkinda bir cozum baslik altinda verilmedi henuz.

4 Cevaplar

0 beğenilme 0 beğenilmeme

https://www.youtube.com/watch?v=wUA2MpOp87U adresinde bunu anlatan bir video var.

7, Mart, 2015 anesin (710 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

ilk olarak: $$\sum_{i=1}^k(i^{n+1}-(i-1)^{n+1})=k^{n+1}.$$


 $i^{n+1}-(i-1)^{n+1}$ su sekilde de yazilabilir: $$i^{n+1}-\left[\binom{n+1}{0}i^{n+1}-\binom{n+1}{1}i^{n}+...+(-1)^r\binom{n+1}{r}i^{n+1-r}...+(-1)^{n+1}\binom{n+1}{n+1}i^{0}\right]$$


sadelestirdigimizde: $$\binom{n+1}{1}i^{n}+...+(-1)^{r-1}\binom{n+1}{r}i^{n+1-r}+...+(-1)^{n}\binom{n+1}{n+1}i^{0}.$$


Oyleyse: $$\sum_{i=1}^k\left[\binom{n+1}{1}i^{n}+...+(-1)^{r-1}\binom{n+1}{r}i^{n+1-r}+...+(-1)^{n}\binom{n+1}{n+1}i^{0}\right]=k^{n+1}.$$


Yani: $$(n+1)\sum_{i=1}^ki^{n}+\sum_{i=1}^k\left[-\binom{n+1}{2}i^{n-1}...+(-1)^{r-1}\binom{n+1}{r}i^{n+1-r}...+(-1)^{n}\right]=k^{n+1}.$$


Goruldugu uzere: $$(n+1)\sum_{i=1}^ki^{n}=k^{n+1}+\sum_{i=1}^k\left[\binom{n+1}{2}i^{n-1}...+(-1)^{r}\binom{n+1}{r}i^{n+1-r}...+(-1)^{n+1}\right].$$


Burdan da: $$\sum_{i=1}^ki^{n}=\frac{1}{n+1}\left(k^{n+1}+\sum_{i=1}^k\left[\binom{n+1}{2}i^{n-1}...+(-1)^{r}\binom{n+1}{r}i^{n+1-r}...+(-1)^{n+1}\right]\right).$$


Artik tumevarimdan hepsini cozebiliriz. Ali hocamizin videosunda da bunlar net bir sekilde anlatiliyor.


15, Mart, 2015 Sercan (23,208 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

$a$ nın pozitif tamsayı olduğu durumda Bernoulli polinomları cinsinden bir eşitlik elde ediliyor. Faulhaber formülleri diye adlandırılıyor, şuradan bakabilirsiniz.

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

$a$ eğer 1 den büyük bir reel sayı ise bu durumda Riemann zeta fonksiyonunun analitik genişlemesi göz önüne alınarak toplamlara bir yorum getirilebilir belki ama istediğiniz türden kapalı bir formülün olduğunu sanmıyorum.



15, Mart, 2015 ayhandil (200 puan) tarafından  cevaplandı
1 beğenilme 0 beğenilmeme

Bir çözüm de ben ekleyeyim:

$k,n\in\mathbb{N}$ olmak üzere

$$S_k(n):=1^k+2^k+3^k+\ldots +n^k=\sum_{i=1}^{n}i^k$$ diyelim ve şu oranlara bir göz atalım.

$x_1:=\frac{S_5(1)}{S_3(1)}=\frac{1^5}{1^3}=1=\frac{9}{9}$

$x_2:=\frac{S_5(2)}{S_3(2)}=\frac{1^5+2^5}{1^3+2^3}=\frac{33}{9}$

$x_3:=\frac{S_5(3)}{S_3(3)}=\frac{1^5+2^5+3^5}{1^3+2^3+3^3}=\frac{276}{36}=\frac{69}{9}$

$x_4:=\frac{S_5(4)}{S_3(4)}=\frac{1^5+2^5+3^5+4^5}{1^3+2^3+3^3+4^3}=\frac{1300}{100}=\frac{117}{9}$

olduğuna göre 

$$\frac{S_5(n)}{S_3(n)}=\frac{1^5+2^5+3^5+\ldots +n^5}{1^3+2^3+3^3+\ldots +n^3}$$ oranının ne olacağını önce birkaç cebirsel işlem ile tahmin edelim. Sonra da bu tahminimizin doğru olduğu tümevarım ile kanıtlarız.

$$x_2-x_1=\frac{33}{9}-\frac{9}{9}=\frac{24}{9}=\frac{8}{3}=2\cdot\frac{4}{3}$$

$$x_3-x_2=\frac{69}{9}-\frac{33}{9}=\frac{36}{9}=4=3\cdot\frac{4}{3}$$

$$x_4-x_3=\frac{117}{9}-\frac{69}{9}=\frac{48}{9}=\frac{16}{3}=4\cdot\frac{4}{3}$$

$$\vdots$$

$$x_n-x_{n-1}=n\cdot\frac{4}{3}$$

olur. Bunları taraf tarafa topladığımızda $$x_n-x_1=\frac{4}{3}(2+3+4+\ldots +n)=\frac{4}{3}\left[\frac{n(n+1)}{2}-1\right]$$

$$\Rightarrow$$

$$x_n=\frac{4}{3}\left[\frac{n(n+1)}{2}-1\right]+x_1=\frac{4}{3}\left[\frac{n(n+1)}{2}-1\right]+1$$

$$\Rightarrow$$

$$x_n=\frac{2n^2+2n-1}{3}$$ bulunur. O halde $$\frac{S_5(n)}{S_3(n)}=\frac{1^5+2^5+3^5+\ldots +n^5}{1^3+2^3+3^3+\ldots +n^3}$$ oranı için tahminimiz $$x_n=\frac{2n^2+2n-1}{3}$$ yani 

$$\frac{S_5(n)}{S_3(n)}=\frac{1^5+2^5+3^5+\ldots +n^5}{1^3+2^3+3^3+\ldots +n^3}=\frac{2n^2+2n-1}{3}$$ olacaktır. Buradan da 

$$S_5(n)=S_3(n)\cdot\frac{2n^2+2n-1}{3}$$ yani $$S_5(n)=\frac{n^2(n+1)^2}{4}\cdot\frac{2n^2+2n-1}{3}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

elde edilir. Tabii bunun doğru olduğunu mutlaka tümevarım ile gösterilmesi gerekiyor. (Neden?) Bu kısmı da okuyucuya egzersiz olarak kalsın.

5, Aralık, 5 murad.ozkoc (8,693 puan) tarafından  cevaplandı
5, Aralık, 5 murad.ozkoc tarafından düzenlendi

Birkac soru sorayim: $5$ ile $3$u neden iliskilendirdik. Neden $5$ ile $4$ degil de $5$ ile $3$. Bir de bu yontemi genellestirebilir miyiz? (Benim cozumdeki gibi). 

$5$ ile $4$ ü ilişkilendirdiğimizde $x_n-x_{n+1}$ farkları arasında bir ilişki yakalayamadım. Bu yüzden $5$ ile $3$ ü ilişkilendirdim. Genelleştirme hususunda şimdilik bir şey söyleyemeyeceğim. Sanırım zor.

...