Eğer $x,y,z$ asallarından hepsi tek olsaydı, pozitif bölenlerin hepsi tek olurdu. O halde birisi $2$ dir.
Buna göre, $A$ sayısının çift pozitif tam sayı bölenlerinin sayısı,tüm pozitif bölenlerden tek olanların farkına eşittir. O zaman aşagıdaki, durumlardan $245$'e eşit olan da $2=z$ imiş.
Yani:$(4+1).(6+1).(7+1)-.(6+1)(7+1)=224$
Yani:$(4+1).(6+1).(7+1)-.(4+1)(7+1)=240$
Yani:$(4+1).(6+1).(7+1)-.(4+1)(6+1)=224$ O halde $A=x^4.y^6.2^7$ olacak. Buradan $4.A=2^9.x^4.y^6$ olduğundan Pozitif bölen sayısı$10.5.7=350$ olur.