Yanıt ek önbilgi gerektirmesin diye (neredeyse) tüm ilgili kavramları yazmaya çalışacacağım. Haliyle uzun olabilir.
(Dedim ama çok eksik var, toparlayan olursa çok memnun olurum)
$C$ hep bir cisim, $V$ de hep bir vektör uzayı olsun.
Tanım(karakteristik):$C$ cisminin birim elemanını $1$ ile gösterelim. $n\in \mathbb{N}$ için $\sum_{i=1}^n 1$'yi sıfıra eşit yapan en küçük $n$ sayısına $C$'nin karakteristiği denir ve $kar(C)=n$ olarak gösterilir. Şayet her $n\in\mathbb{N}$ için $\sum_{i=1}^n 1\neq 0$ geçerliğiyse, $C$'nin karakteristiği $0$ olarak tanımlanır.
Tanım(çifte doğrusal form, ingl. bilinear form): $f:V\times V\rightarrow C$ göndermesine, eğer her $x,y,z\in V$ ve her $\lambda\in C$ aşağıdaki şartları sağlarsa çifte doğrusal form denir:
\begin{equation}
f(\lambda y+z,x)=\lambda f(y,x)+f(z,x)
\\
f(x,\lambda y+z)=\lambda f(x,y)+f(x,z)
\end{equation}
Ayrıca $\forall x,y\in V: f(x,y)=f(y,x)$ ise $f$'ye simetrik çifte doğrusal form denir.
Tanım(karesel form, ingl. quadratic form): $q:V\rightarrow C$ göndermesine, eğer aşağıdaki şartları sağlarsa karesel form denir:
\begin{equation}
q(\lambda x)=\lambda^2 q(x), \text{ } \forall x \in V \text{ ve } \forall \lambda\in C
\end{equation}
\begin{equation}
f_q:V\times V\rightarrow C, f_q(x,y)=q(x+y)-q(x)-q(y) \text{ bir çifte doğrusal form tanımlar. (*)}
\end{equation}
Ayrıca yukarıdaki bağıntıyı geçerleyen $f_q$ çifte doğrusal formu ve $q$ karesel formu ile donatılmış C cismi üzerindeki $V$ vektör uzayına karesel uzay denir.
Örnek( veya düzgün karesel formun tanımı): Çokkatsayılı ikinci dereceden polinomlar yani $V$ sonlu boyutlu,
$x:=(x_1,...,x_n)\in V, \lambda_{ij}\in C$ için $q(x):=\displaystyle \sum_{1\leq i\leq j\leq n}\lambda_{ij}x_i x_j$ karesel form tanımlar ve bunlara $kar(C)\neq 2$'de özel olarak düzgün karesel form denir.
Not: $kar(C)=2$ olması karesel formun özelliklerini büyük ölçüde değiştirir (Cahit Arf'ın aşağıdaki teoreminde de aynı şey söz konusu olacak.). Bunu $kar(C)\neq 2$'li bir cisim için her simetrik çifte doğrusal göndermenin, kendisini 'üreten' tam tamına bir tane karesel form olabileceği savında görüyoruz ($=2$ için doğru değil, sonraki cümleyi anlamak için bunları kendiniz kanıtlamaya çalışın). Daha da önemlisi $q(x)$'yu vektörün uzunluğunun karesi ($\vert x\vert ^2$ ile gösterelim), $\frac{1}{2}f_q(x,y)$'yi de vektörlerin iç çarpımı ($x\cdot y$ ile gösterelim) olarak yorumlarsak, $kar(C)\neq 2$ için beklendiği gibi $x\cdot x=\vert x\vert^2$ olurken,$kar(C)=2$'de $x\cdot x\equiv \frac{1}{2}f_q(x,x)=q(2x)-q(x)-q(x)=2q(x)\equiv 2 \vert x\vert^2 =(1+1)\vert x\vert^2=0$ yani bu (her ne kadar garip gelse de) her vektörün kendine dik olduğunu ifade etmektedir.
Tanım(karesel formların denkliği): İki karesel forma; eğer biri, diğerinden yozlaşmış/dejenere olmayan $C$-doğrusal ($x=(x_1,...,x_n)$ değişken) dönüşümüyle elde edilebiliyorsa birbirine denk denir.
Tanım(dik doğrudan toplam, ingl. ortogonal direct sum): $(V_1,f_1)$ ve $(V_2,f_2)$ iki tane simetrik çifte doğrusal formla donatılmış vektör uzayı olsunlar. İki vektör uzayının $V:=V_1\oplus V_2$ doğrudan toplamı 2 ile $x_1,y_1\in V_1$, $x_2,y_2\in V_2$ için $f((x_1,x_2),(y_1,y_2)):=f_1(x_1,y_1)+f_2(x_2,y_2)$ olarak tanımlı simetrik çifte doğrusal formunun oluşturduğu ikiliye $(V_1,f_1)$ ve $(V_2,f_2)$'nin dik doğrudan toplamı denir ve ikilinin uzayı $V_1\perp V_2$ ile gösterilir (veya daha fazla uzay için $\perp\displaystyle \sum_{i=1}^n V_i:=V_1\perp ... \perp V_n$ ).
Not: Dik çünkü $x\in V_1,y\in V_2$ için $f((x,0),(0,y))=f_1(x,0)+f_2(0,y)=0+0=0$ yani $V_1$ ve $V_2$ birbirlerine $f$'ye göre diktirler.
Sav: $kar(C)\neq 2$'de her karesel formun bir kendine denk 'köşegensel' karesel formu vardır:
$q(x)=\sum_{1\leq i\leq n} a_i x_i^2$, $a_i\in C$.
Ya da karesel uzay bağlamında her karesel uzay $V$, $q(u_i)=a_i$ sağlayan bir $u_1,...,u_n\in V$ dik tabanına sahiptir. Diğer bir deyişle $V$ bir boyutlu karesel altuzayların dik doğrudan toplamıdır:
\begin{equation}kar(C)\neq 2 \text{ için } V=\perp\displaystyle\sum_{1\leq i\leq n}C u_i\end{equation}
Not: Burada $Cx$, ($x\in V$ için) $Cx:=\{cx:c\in C\}$ demek.
Ama $kar(C)=2$ genel durumu için en azından iki boyutlu altuzayları da ilave etmemiz gerekiyor:
Sav(Arf[1]): $boy(V)=n$ ise
\begin{equation}
kar(C)= 2 \text{ için }V=\perp\displaystyle\sum_{1\leq i\leq r}(C u_i+C v_i)+\perp\displaystyle\sum_{1\leq j\leq s}(C w_j)
\end{equation}
, burada $f_q(u_i,v_i)\neq 0$ (devamda normallemeyle $f_q(u_i,v_i)=1$ seçtiğimizi varsayıyoruz.) ve $n=2r+s$. O zaman karakteristik ikide $q$ karesel formunun şöyle bir denk karesel formu vardır:
\begin{equation}q(x)=\displaystyle\sum_{1\leq i\leq} r(a_i x_i^2+x_i y_i+b_i y_i^2)+\displaystyle\sum_{1\leq j\leq s}c_j z_j^2
\end{equation} şayet
\begin{equation}
x=\displaystyle\sum_{i\leq i\leq r}(x_i u_i+y_i v_i)+\displaystyle\sum_{1\leq j\leq s}z_j w_j
\end{equation} ve $a_i)q(u_i)$, $b_i=q(v_i)$ ve $c_j)q(w_j)$ ise.
Tanım(karesel form için değişmez): Değişmez, bir karesel forma ilintilenen eğer bir formun yerini başka bir denk form aldığı takdirde değişmeyen matematiksel büyüklüktür. Karesel uzaylar için ise, uzaylar arasındaki izomorfizmalar tarafından değişmeyen büyüklükler kastedilir.
Tanım(Cebir): Bir $C$ cismi üzerindeki $A$ cebiri, 'çarpım' adı verilen $C$-çifte doğrusal göndermeli $\cdot:A\times A\rightarrow A$ $C$-vektör uzayı olarak tanımlanır.
Tanım(Clifford cebiri): Bir $(V,q)$ karesel uzayının Clifford cebiri $Cliff(V,q)$ aşağıdaki tanımlayıcı ilişkiye sahip olan ve elemanları $V$'den oluşan birleşmeli $C$-cebiridir:
\begin{equation}x^2=q(x), \ \ \forall x\in V (**)\end{equation}
ya da (*)'den dolayı \begin{equation}xy+yx=f_q(x,y)\ \ \forall x,y\in V\end{equation}
Sav: Eğer $u_1,..,u_n$ $V$'nin bir $C$-tabanıysa, o zaman $Cliff(V)$'nin $C$ tabanı $i_1<i_2<\cdots<i_k$ ve $0\leq k\leq n$ olacak şekilde $u_{i_1}u_{i_2}\cdots u_{i_k}$'dir ve $Cliff(V)$'nin $C$-boyutu $2^n$'ye eşittir.
Sav: $\text{Cliff}(V)$ $V$'nin bir değişmezidir. Eğer $\text{Cliff}_0(V)$; $\text{Cliff}(V)$'nin $k$ çift sayılı çarpanlı $u_{i_1}u_{i_2}\cdots u_{i_k}$ çarpımı ile üretilmiş bir alt cebiri ise, o da $V$'nin bir değişmezidir (çünkü (**) ikinci dereceden). $\text{Cliff}_0(V)$'nin $C$-boyutu ise $2^{n-1}$'dir.
Sav: \begin{equation}
kar(C)= 2 \text{ ise: } V=V_1\perp V_2\rightarrow \text{Cliff}(V)=\text{Cliff}(V_1)\otimes \text{Cliff}(V_2)\end{equation}
Tanım(ikili/iki boyutlu karesel uzay, ingl. binary quadratic space): Bir ikili uzayı $V$; iki eleman ($u,v$) üzerinden tanımlanır:\begin{equation}(***)
q(u)=a, q(v)=b, f_q(u,v)=1
\end{equation}
Clifford cebiri $\text{Cliff}(V)$'nin ise şu bağıntıları vardır:
\begin{equation}
u^{2}=a, v^{2}=b, uv+vu=1
\end{equation}.
Bu $1,u,v,uv$ $C$-tabanına sahip dörtlü/dört boyutlu ana basit cebirdir. Çift altcebir $\text{Cliff}_0(V)$ iki boyutludur ve taban elemanları
$(uv)^2+uv=uv(vu+1)+uv=u^2v^2=ab$'yi geçerleyen
$1$ ve $uv$'dir. $w:=uv$ alıp Artin-Schreier işlemcisi $\mathcal{P}(X):=X^2+X$'yi kullanırsak:
\begin{equation}
\text{Cliff}_0(V)=C(w) \text{, }\mathcal{P}(w)=ab \text{ için}
\end{equation}