murad.ozkoc'un yaniti standard bir yanit. Bir baska yanit ise su iki savi kullanarak verilebilir:
Sav 1. $X$ baglantili bir uzay ve $\{ 0, 1 \}$ ayrik topolojiyle donatilmis olsun. $f: X \to \{ 0, 1\} $ surekli bir fonksiyon ise $f$ sabit fonksiyondur.
Sav 1'in Kaniti. $f : X \to \{ 0 ,1 \}$ surekli bir fonksiyon olsun. $U = f^{-1}(0)$ ve $V = f^{-1}(1)$ kumeleri acik olmak zorundalar. Ustelik, $f$ bir fonksiyon oldugu icin, $U \cap V = \emptyset$ ve $U \cup V = X$ olmak zorunda. Demek ki, ($X$ baglantili oldugu icin) $U$ ve $V$'den birisi bos olmali. Bir baska deyisle, $U$ ve $V$'den bir tanesi $X$'e esit olmali. Bu da fonksiyonun sabit olmasi demek. $\square$
Sav 2. Sav 1'in tersi de dogrudur. Yani, $X$'ten $\{ 0, 1\}$'e giden sabit fonksiyon disinda surekli fonksiyon yoksa, $X$ baglantili bir uzaydir.
Sav 2'nin Kaniti. $X$ baglantisiz bir uzay olsun. $U, V \subset X$ alt kumeleri acik, bostan farkli, birbiriyle kesismeyen ve birlesimleri butun uzayi veren acik kumeler olsun. O halde, $$f(x) = \begin{cases} 0, \quad x \in U \text{ ise} \\ 1, \quad x \in V \text{ ise}\end{cases}$$ kuraliyla tanimlanan $f: X \to \{0,1 \}$ fonksiyonu surekli bir fonksiyondur ve sabit degildir. Contrapositive ile kanitlamis olduk. $\square$
Kanit: $X$ baglantili bir uzay ve $f: \overline{X} \to \{0,1\}$ surekli bir fonksiyon olsun. $f$'in $X$'e kisitlanisi da surekli bir fonksiyondur. $X$ baglantili oldugu icin, sav 1'den dolayi $f$'in $X$ uzerinde sabit olmasi gerektigini goruyoruz. Her $x \in X$ icin $f(x) = c$ diyelim.
Simdi $a \in \overline{X}$ olsun. $X$ icerisinde, $x_n \to a$ olacak sekilde bir $x_n$ dizisi vardir. $f$ surekli oldugu icin $f(x_n) \to f(a)$ yakinsakligi da gecerlidir. Ama her $x_n$ icin $f(x_n) = c$ olduguna gore, $f(x_n)$ sabit dizisinin limiti de $c$ olmali. Yani, $f(a) = c$. Demek ki, her $a \in \overline{X}$ icin $f(a) = c$, yani $f$ sabit fonksiyon.
Eger $f: \overline{X} \to \{0,1\}$ surekli ise, $f$'in sabit olmasi gerektigini gosterdik. Sav 2'den dolayi, $\overline{X}$ baglantilidir. $\square$
Sonuc: Baglantili bilesenler, maksimal baglantili kumelerdir. Yani, $A$ bir baglantili bilesen ve $B \supseteq A$ baglantili bir kume ise $A = B$'dir. Simdi, $X$ bir baglantili bilesen ise, yukarida $\overline{X}$'in de baglantili olmasi gerektigini soyledik. $\overline{X} \supseteq X$ oldugu icin, maksimallikten dolayi $X$ kapali olmak zorundadir.