Sadece bir adet boskume mi var?

1 beğenilme 0 beğenilmeme
126 kez görüntülendi

Sadece bir adet boskume mi var?

Mesela, $\{x\in \mathbb R \: | \: x^2=-1\}$ kumesi ile $\{x \in \mathbb F_3 \: | \: x^2=-1\}$ kumesi ayni mi?

"La tabiki de ayni"dan fazla bir soz olursa sevinirim.

11, Ağustos, 2015 Lisans Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu

1) İki küme ne zaman birbirinden farklıdır diyoruz? Birinde olup diğerinde olmayan bir eleman vârolduğu zaman (Aslında bu bir iddiâ. Yâni formel tanım farklı olabilir). Kümeler boş olduğundan böyle bir elemandan bahsedemeyiz. O hâlde iki boşküme aynıdır. Sanırım buna "vacuously true" diyorlar.

2) Şöyle bir isbât var: $\phi_1$ ve $\phi_2$ iki boşküme olsunlar. Boşküme her kümenin altkümesi olduğundan $$\phi_1\subseteq \phi_2$$ sağlanır. Aynı şekilde bu içermenin tersi de geçerlidir:  $$\phi_2\subseteq \phi_1.$$ Dolayısıyla, $$ \phi_1=\phi_2$$ olduğu görülür.

Buradaki problemcik: Boşküme her kümenin altkümesi midir? (Evet, fakat ayrı bir soru olarak verilmesi daha uygundur bence)

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

Evet, Axiom of Extensionality (Türkçesini bilmiyorum) şunu söyler:

$\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Leftrightarrow x=y)$

Yani iki küme eşittir ancak ve ancak elemanları aynı ise. Buradan boş kümenin biricik (unique) olması gerektiği kolayca çıkıyor zira $a$ ve $b$ boş küme olmak özelliğini sağlayan iki farklı küme olsaydı bu belit gereği birinde olup diğerinde olmayan bir eleman olması gerekirdi ama kümeler boş olduğu için bu olamaz.

11, Ağustos, 2015 Burak (1,254 puan) tarafından  cevaplandı
21, Aralık, 2015 Sercan tarafından seçilmiş
...