Sonsuz toplam , integral ve taylor

1 beğenilme 0 beğenilmeme
86 kez görüntülendi

Daha önce burada benzer bir konu açılmıştı.


$${\large\int f(x) dx}$$

Şeklinde bir  integralimiz olsun.${f(x)}$ fonksiyonunu taylor serisi ile açalım.

$${\large\int \sum_{n=0}^\infty g(n)h(x) dx}$$

Benim sorum ; Aşağıdaki eşitlik her zaman için doğrumudur?

$${\large\int \sum_{n=0}^\infty g(n)h(x) dx=\sum_{n=0}^\infty g(n)\int h(x) dx}$$

23, Temmuz, 2015 Lisans Matematik kategorisinde bertan88 (1,111 puan) tarafından  soruldu

1 cevap

1 beğenilme 0 beğenilmeme
Yakınsaklık yarıçapı sonlu ise yakınsaklık yarıçapı içerisinde yakınsaklık düzgündür. (Tüm reel eksen ise o hâlde düzgün yakınsamayabilir). 

Dolayısıyla bu aralıkta çalışılıyorsa o halde integral ve sonsuz toplam yerdeğiştirebilir. 
23, Temmuz, 2015 Yasin Şale (1,175 puan) tarafından  cevaplandı
...