Mathematica ile ilk $30$ asal sayi icin $a$ degerleri.
ClearAll["Global`*"]
ardisikKareKalan[p_] := Module[{},
var = Array[x, p - 1];
eq = Thread[var^2 == Range[p - 1]];
sol = Length /@ (Solve[#1, #2, Modulus -> p] & @@@ Transpose@{eq, var}) // Unitize;
Table[If[sol[[i]] != 0 && sol[[i]] == sol[[i + 1]], i, Nothing], {i,Length@sol - 1}]]
prime = Prime[Range[2, 30]];
TableForm[Transpose@{prime, Length /@ ardisikKareKalan /@ prime},
TableHeadings -> {None, {"p", "a"}}]
$p\ge19$ icin $\Big\lfloor\dfrac pa\Big\rfloor=4$ veriyor gibi (en azindan $19\le p\le 1223$ icin boyle)
$\Big\lfloor\dfrac pa\Big\rfloor=4$ esitligini $a$ icin cozersek $a=1+c_1+c_2$ verir oyle ki $c_1,c_2\in\mathbb{Z^{\ge0}}$, $p\ge19$, $p=4 + 5c_1+ 4c_2$ denkleminin cozumleri.
veya butun $p$'le icin
$\Big\lfloor\dfrac {p-3}a\Big\rfloor=4$ esitligini $a$ icin cozersek $a=1+c_1+c_2$ verir oyle ki $c_1,c_2\in\mathbb{Z^{\ge0}}$, $p=7+ 5c_1+ 4c_2$ denkleminin cozumleri.
Bu arada $a=\Big\lfloor\dfrac {p-2}4\Big\rfloor$ dogru degerleri verir..
$\begin{array}{cc}
\text{p} & \text{a} \\\hline
3 & 0 \\
5 & 0 \\
7 & 1 \\
11 & 2 \\
13 & 2 \\
17 & 3 \\
19 & 4 \\
23 & 5 \\
29 & 6 \\
31 & 7 \\
37 & 8 \\
41 & 9 \\
43 & 10 \\
47 & 11 \\
53 & 12 \\
59 & 14 \\
61 & 14 \\
67 & 16 \\
71 & 17 \\
73 & 17 \\
79 & 19 \\
83 & 20 \\
89 & 21 \\
97 & 23 \\
101 & 24 \\
103 & 25 \\
107 & 26 \\
109 & 26 \\
113 & 27 \\
\end{array}$