$\{1,2,\cdots,n\}$ kumesinde $p$ asal sayisina bolunmeyen sayilarin sayisi

1 beğenilme 0 beğenilmeme
69 kez görüntülendi

$\{1,2,\cdots,n\}$ kumesinde $p$ asal sayisina bolunmeyen $n-\lfloor \frac np \rfloor$ sayi oldugunu ispatlayiniz.

22, Haziran, 2015 Orta Öğretim Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu
Sectigin kategori icin begendim soruyu. Ortaokul ogrencisi biri cevaplayabilir, ugrasirken de zevk alir hem de.

Bu iki soru aslinda cok kullaniliyor. Ben daha da kullaniyorum.

Benden duymuş olmayın ama burada iki değil bir soru var.

Ayni anda sorulmus iki soru uzerine.. (basliklar farkli)

3 tip matematikci vardir: Sayi saymayi bilenler, sayi saymayi bilmeyenler.

1 cevap

0 beğenilme 0 beğenilmeme
 
En İyi Cevap
$n$ herhangi bir pozitif doğal sayı, $p$ bir asal sayı olsun. 
1)    $p>n$ ise $\left[\frac np\right]=0$ olacağından çok açıktır ki $n$'e kadar olan her sayı $p$ asalına tam bölünmez. Yani: $n-\left[\frac np\right]=n-0=n$ dir.
2) $p=n$ ise  $\left[\frac np\right]=1$ olur ve  son terim hariç hiç bir terim $p$ asalına tam bölünmez. $n-\left[\frac np\right]=n-1$ dir.
3) $p<n$ ise $1,2,3,...,n$ dizisinde $p$ asalı ile tam bölünenlerin sayısı $p$' nin tam katlarının sayısı kadardır. Yani :$\left[\frac np\right]$ kadardır. Eh bölünmeyenlerin sayısı da diziden bölünenlerin sayısının atılması ile bulunacağından: $n-\left[\frac np\right]$ olacaktır.
26, Haziran, 2015 Mehmet Toktaş (18,358 puan) tarafından  cevaplandı
26, Haziran, 2015 Sercan tarafından seçilmiş
...