Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
Eğer $u: \mathbb{R}\to\mathbb{R}$ ye $c$ noktasında türevleniyor ve $u'(c)=u(c)=0$ ise $h(x)=|u(x)|$ kuralı ile verilen $h$ fonksiyonunun $c$ noktasında türevlenebilir olduğunu gösteriniz.
0
beğenilme
0
beğenilmeme
376
kez görüntülendi
Rolle teoreminden ve kritik noktadan gitmeye çalıştım fakat olmadı.
analiz
14 Mayıs 2020
Lisans Matematik
kategorisinde
sumy
(
13
puan)
tarafından
soruldu
23 Mayıs 2020
sumy
tarafından
yeniden gösterildi
|
376
kez görüntülendi
cevap
yorum
Türev tanımından hareketle gösterebilirsin.
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$a\in\mathbb{R}\setminus \{0\}$ olmak üzere süreklilik tanımından hareketle $$f(x)=\frac{1}{x}$$ kuralı ile verilen $$f:\mathbb{R}\setminus\{0\}\to\mathbb{R}$$ fonksiyonunun $a$ noktasında sürekli olduğunu gösteriniz.
$a\in\mathbb{R}$ olmak üzere süreklilik tanımından hareketle $$f(x)=x^3$$ kuralı ile verilen $$f:\mathbb{R}\to\mathbb{R}$$ fonksiyonunun $a$ noktasında sürekli olduğunu gösteriniz.
$$f(x,y):=\left\{\begin{array}{ccc} \frac{x^3-y^3}{x^2+y^2} & , & (x,y)\neq (0,0) \\ \\ 0 & , & (x,y)=(0,0) \end{array}\right.$$ kuralı ile verilen $$f:\mathbb{R}^2\to\mathbb{R}$$ fonksiyonunun $(0,0)$ noktasında sürekli olduğunu gösteriniz.
$f:\mathbb{R}\to\mathbb{R}$ türevlenebilir bir fonksiyon olsun. Eğer $f'(a)<0$ ve $f'(b)>0$ ise o zaman $f'(c)=0$ olacak şekilde en az bir $c\in (a,b)$ olduğunu gösteriniz.
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,274
soru
21,803
cevap
73,475
yorum
2,427,871
kullanıcı