Çok değişkenli fonksiyonlar hakkında

0 beğenilme 0 beğenilmeme
99 kez görüntülendi

çok değişkenli bir fonksiyon var ve kısmi türevleri sürekli olsun , bu durumda türevlenebilir mi ?

Bu zaten çok değişkenli fonksiyonlarda türevlenebilirliğin tanımı değil mi ?

$ \lim_{(x,y)\to(a,b)}\frac{f(x,y)-(f(a,b)+A(x-a)+B(y-b))}{\sqrt{(x-a)^2+(y-b)^2}}=0 $ bu tanım mı kullanılmalı soruyu cevaplamak için ?

2, Eylül, 2019 Lisans Matematik kategorisinde mbugday (137 puan) tarafından  soruldu

mbugday, 

Yazdığın (limit içeren) koşul, türevlenebilmenin  (bir) tanımı. (çoğu zaman diferansiyellenebilme deniyor).

(Diferansiyellenebilmenin eşdeğer bir tanımı da var)

Ama, bunun sağlandığını  göstermek o kadar basit değil.

O nedenle, ilk yazdığın YETER (gerekli DEĞİL) koşul kullanılır. O bir Teoremdir.

Tam ifadesini ve ispatını (Diferansiyellenebilmenin eşdeğer tanımı ile)

http://Matematik.cu.edu.tr/Dersler/MT132/DiferansiyellenebilmeYeterKosulu.pdf

de bulabilirsin.

Diferansiyellenebilmenin iki tanımın eşdeğer olduğunu da

 http://matematik.cu.edu.tr/Dersler/MT132/DiferansiyellenebilmeTanimi.pdf

de bulabilirsin.

Hocam bu yazdığım soru sözlü mülakatta sorulmuş bir soru . Sizin attığınız linkleri inceledim ve yapılan kanıt baya uzun . Sözlü olarak nasıl cevap verilebilir ?

Orada yazılanlar,

"çok değişkenli bir fonksiyon var ve kısmi türevleri sürekli olsun , bu durumda türevlenebilir mi ?"

sorusunun cevabının "Evet" olduğunu gösteriyor.

1 cevap

0 beğenilme 0 beğenilmeme

Çok değişkenli fonksiyonlarda, "türevlenebilme" bir değişkenli fonksiyonlara pek benzemez.

Örneğin $f(x,y)=\begin{cases}\frac{xy}{x^2+y^2},\ \ (x,y)\neq(0,0)\\ 0\qquad\quad  (x,y)=(0,0)\end{cases}$ fonksiyonu, $(0,0)$ noktasında her iki değişkene göre de kısmi türeve sahiptir ama o noktada sürekli değildir (bu, doğrular boyunca limit tekniği ile görülür). Bu ise 1-değişkenli fonksiyonlardakinden farklı bir durumdur.

Bu nedenle, çok değişkenli fonksiyonlarda, "diferansiyellenebilme" (söyleme ve yazma zorluğu nedeniyle "türevlenebilme" denebilir) diye adlandırılan farklı bir kavram kullanılır. Bu yeni tanım 1-değişkenli fonksiyonlardaki türevlenebilmeye çok benzer davranır.

Bir tanımı: ($f,\ (a,b)$ merkezli bir dairede tanımlı bir fonksiyon olsun)

$\lim_\limits{(x,y)\to(a,b)}\dfrac{f(x,y)-(f(a,b)+A(x-a)+B(y-b))}{\sqrt{(x-a)^2+(y-b)^2}}=0$

olacak şekilde $A,B$ gerçel sayıları varsa, $f$ fonksiyonu $(a,b)$ noktasında diferansiyellenebilirdir denir.

(Yorumlardaki bağlantıda aşağıdaki teoremin ispatı, oradaki iki teoremi birleştirerek, var)

Teorem: $f(x,y), (a,b)$ merkezli bir dairede tanımlı, bu dairenin her noktasında $\frac{\partial f}{\partial x}$ ve $\frac{\partial f}{\partial y}$ var ve bu kısmi türevler $(a,b)$ noktasında sürekli iseler, $f,\ (a,b)$ noktasında diferansiyellenebilirdir (ayrıca: $A=\frac{\partial f}{\partial x}(a,b),\ B=\frac{\partial f}{\partial y}(a,b)$ olur) (Daha fazla sayıda değişkenli fonksiyonlar için de bu durum geçerlidir)

Önemli : Ama bu teoremin karşıtı doğru bir iddia değildir.

(Bir değişkenli fonksiyonlarda benzer bir diferansiyellenebilirlik tanımı yapıldığında diferansiyellenebilirlik=türevlenebilirlik diyebileceğimiz aşağıdaki durum ortaya çıkıyor)

Teorem: $f$ bir $a$ sayısını içeren bir açık aralıkta tanımlı, 1-değişkenli bir fonksiyon olsun. O zaman:

$f$ nin $a$ da türevi vardır $\Leftrightarrow\ f,\ a$ da diferansiyellenebilirdir.

(İspatı kolay)


6, Eylül, 2019 DoganDonmez (4,434 puan) tarafından  cevaplandı
6, Eylül, 2019 DoganDonmez tarafından düzenlendi
Bir $(a,b)$ noktasında diferansiyellenebilen ama o noktada kısmi türevleri sürekli olmayan bir $f(x,y)$ fonksiyonu bulunuz.
...