İki kümenin birleşiminin eleman sayısı formülüne benzer formüller

0 beğenilme 0 beğenilmeme
224 kez görüntülendi

Bu tam olarak bir soru değildir.

$A,B$ iki (sonlu) küme ise:

$s(A\cup B)=s(A)+s(B)-s(A\cap B)\quad $  ($s(X):X$ (sonlu) kümesinin eleman sayısı)

formülü ilkokulda öğretiliyordur sanırım. Bu formülden (kolayca)

$s(A\cup B\cup C)=s(A)+s(B)+s(C)-s(A\cap B)-s(A\cap C)-s(B\cap C)+s(A\cap B\cap C)$ ve

benzer formüller, (sonlu sayıda sonlu kümenin birleşimi için) elde edilir.

Bu formülleri, bazı problemleri çözmek için, genelleştirmek istiyoruz.

$\cal{A}$, birleşim ve kesişim işlemleri altında kapalı, (kendisi de bir küme olan) bir kümeler topluluğu  ve $(G,+)$ bir Abelyen (değişmeli) grup olmak üzere 

$F:\cal{A}\to$ $ G, \quad\forall X,Y\in\cal{A}$ için $F(X\cup Y)=F(X)+F(Y)-F(X\cap Y)$ 

eşitliğini sağlayan bir fonksiyon olsun.

O zaman, üçlü,dörtlü,... kesişimler için eleman sayısı için yukarıdaki formüller, $F$ için de (aynı ispatlarla) geçerli olur. Yani (bu özellikteki her fonksiyon için) :

$F(A\cup B\cup C)=F(A)+F(B)+F(C)-F(A\cap B)-F(A\cap C)-F(B\cap C)+F(A\cap B\cap C)$

$F(A\cup B\cup C\cup D)=F(A)+F(B)+F(C)+F(D)-\cdots+\cdots-F(A\cap B\cap C\cap D)$

vs doğru olur.

(Aslında koşulumuzu: $F(X\cup Y)+F(X\cap Y)=F(X)+F(Y)$ şeklinde yazarsak, $(G,+)$ nın yarıgrup olması da yeterli olur)

Bu özellik, aşağıdaki $\cal{A}$ (kümeler topluluğu) ve $(G,+)$ için sağlanıyor.

1. $\cal{A}$ sonlu kümelerden oluşuyor, $G=\mathbb{Z}$ (+:bilinen toplama işlemi) için $F(X)=s(X)$ 

2. $\cal{A}$ sonlu kümelerden oluşuyor, $G=\mathbb{Z}_2$ (+:modüler aritmetik toplama işlemi) için $F(X)=\overline{s(X)}=[s(X)]$  (mod 2 denklik sınıfı)

3. $\cal{A}$, $\mathbb{R}$ nin tüm sonlu alt kümeleri, $G=\mathbb{R},\ F(X)= X$ deki elemanların toplamı. 

4. $\cal{A}$, $\mathbb{R}$ nin tüm sonlu alt kümeleri, $G=\mathbb{R},\ F(X)= X$ deki elemanların karelerinin toplamı.

Aklıma gelen sorular:

Başka değişik örnekler bulabilir miyiz?

3. Örneği  kullanarak daha önce bu sitede (yakın bir zamanda) sorulmuş bir problemi çözebilir miyiz?





11, Ağustos, 11 Lisans Matematik kategorisinde DoganDonmez (4,244 puan) tarafından  soruldu
14, Ağustos, 14 DoganDonmez tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

Düzlem bölgelerinin alanı ve cisimlerin hacmi de benzer özelliğe sahiptir.

$\cal{A}:\ \mathbb{R}$ nin (hepsinin ortak bir noktası olan) kapalı sınırlı aralıkların bir topluluğu ve $F:\cal{A}\to \mathbb{R}$, her aralığı aralığın uzunluğuna gönderen fonksiyon olsun. 

$F([a,b])=\int_a^b 1\,dx$ olur.

Aslında bu tür $F$ ler (in hemen hemen tümü) bir çeşit integraldir.

$X$ sonlu bir küme, $(G,+)$ bir abelyen grup ve $f:X\to G$ fonksiyonu için $\int_Xf(x)\, dx=\sum_{x\in X}f(x)$ olarak tanımlarsak:

1. Sonlu kümelerin eleman sayısı fonksiyonu $F:\cal{A}\to \mathbb{N}$ de

$s(X)=\int_X1\,dx$

2. $\cal{A},\ \mathbb{R}$ nin sonlu alt kümeleri topluluğu ve $F:\cal{A}\to\mathbb{R}$, $F(X)=X\textrm{ in elemanlarının toplamı}$ da böyle bir integral olarak yazılabilir. $F(X)=\int_Xx\, dx$ olur.


20, Ağustos, 20 DoganDonmez (4,244 puan) tarafından  cevaplandı
...