$x^2-2xy-15y^2=0$ doğrularından eğimi pozitif olanın y=2 doğrusunu kestiği noktanın apsisi kaçtır ?

0 beğenilme 0 beğenilmeme
102 kez görüntülendi

x^2-2xy-15y^2=0

doğrularından eğimi pozitif olanın y=2 doğrusunu kestiği noktanın apsisi kaçtır ?

verilen ifadeyi çarpanlarına ayırarak iki doğru denklemi elde ettim ve eğimi pozitif olanınıda buldum ama y=2 doğrusunu kestiği noktayı bulamadım yardımcı oluranız çok mutlu olurum :))) 

11, Aralık, 2017 Orta Öğretim Matematik kategorisinde BENGİSU (33 puan) tarafından  soruldu
11, Aralık, 2017 alpercay tarafından düzenlendi

2 Cevaplar

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

$x^2-2xy+15y^2=0$ ifadesini $(x-5y)(x+3y)=0$ olarak çarpanlarına ayırmak mümkündür. Buradan iki doğru gelir ve eğimi pozitif olan $x-5y=0\implies y=\dfrac{x}{5}$ tir. Eğer bu doğru $y=2$'yi kesiyorsa onun $y=2$ değerine sahip olduğu nokta isteniyordur. $$y=2=\dfrac{x}{5}\implies x=10$$ Demek ki bu doğrunun o noktadaki apsisi $10$...

11, Aralık, 2017 Deniz Tuna Yalçın (895 puan) tarafından  cevaplandı
12, Aralık, 2017 BENGİSU tarafından seçilmiş

gerçekten çok teşekkür ederim:) kolay gelsin

Rica ederim, size de:)

0 beğenilme 0 beğenilmeme

İkinci bir yoldan çözelim: İfadeyi $4$ ile çarparak ve $4y^2$  ekleyip çıkartarak tam kare yapalım.

$4x^2-8xy+4y^2-4y^2-60y^2=(2x-2y)^2-64y^2=0$  eşitliğinde $x=5y$   ve  $x=-3y$   bulunur. Burada büyük resmi de hatırlayalım. Verilen eşitlik konik ailesinin bir üyesidir. $a,b,c,d,e,f$  gerçel katsayılar olmak üzere Genel konik denklemi 

$$ax^2+bxy+cy^2+dx+ey+f=0$$

şeklinde verilir. $\Delta=b^2-4ac$  olarak tanımlanırsa $\Delta \ge 0, \Delta\lt0$ ,çarpanlarına ayrılabilme ve katsayıların durumlarına göre denklem elips,parabol, hiperbol,çember ve bunların dejenere hali olan paralel iki doğru,çakışık iki doğru,kesişen iki doğru, nokta veya boş küme belirtebilir.

11, Aralık, 2017 alpercay (1,640 puan) tarafından  cevaplandı
...