Kuadratik Cisimler üzerinde Siklotomik Cisimlerin minimal polinomları

1 beğenilme 0 beğenilmeme
227 kez görüntülendi

Su ara edinmis oldugum bir gozlemi/bilgiyi soru olarak paylasayim. Bence hos ve faydali bir soru. 

Ilk olarak birkac bilgi vermek istiyorum: 

$p$ asal olmak uzere... $p\equiv 1 \mod 4$ olsun. Bu durumda $$\sqrt{p} \in \mathbb Q(w_p)$$ olur. ($w_{n}$ ile  birin esas $n$. kokunu imgeleyecegim). Eger $p \mid n$ ise  $$\sqrt{p} \in \mathbb Q(w_p) \subset \mathbb Q(w_n)$$ yani  $$ \mathbb Q(\sqrt{p})  \subset \mathbb Q(w_n)$$ saglanir ve genisleme derecesi $$\frac{\phi(n)}{2}$$ olur. Ayni sekilde $p\equiv 3 \mod 4$ ise $$\sqrt{-p} \in \mathbb Q(w_p)$$ olur. Eger $p \mid n$ ise $$ \mathbb Q(\sqrt{-p})  \subset \mathbb Q(w_n)$$ saglanir ve genisleme derecesi $$\frac{\phi(n)}{2}$$ olur.

Soru su: Eger direkt $\mathbb Q$ uzerinde sorsaydik minimal polinom $\Phi_n(x)$ olurdu ($n$. siklotomik polinom). Bu alisageldik bir bilgi. Peki $\mathbb Q(\sqrt p)$ (ya da $\mathbb Q(\sqrt {-p})$) uzerindeki minimal polinom ne olur?  (Tabii ispat olarak ne oalcagini soruyorum. Tahmin etmek zor degil gibi).

3, Aralık, 2017 Akademik Matematik kategorisinde Sercan (23,624 puan) tarafından  soruldu
3, Aralık, 2017 Sercan tarafından düzenlendi

$\sqrt{p}$'yi nasil yazacagimiz bilgisini yeni duyanlar `quadratic Gauss sum' konusuna bakabilirler.

Cevap gelmeyecek gibi, yakin bir gelecekte cevaplarim. Burada da bir ornek var aslinda: http://matkafasi.com/113710/s#a113799

...