$\mathbb{R}^2$ üzerinde tanımlı bir fonksiyonun tersini bulma

0 beğenilme 0 beğenilmeme
101 kez görüntülendi

$f:\mathbb{R}^2\to\mathbb{R}, f(x,y)=x.y$

$f:\mathbb{R}^2\to\mathbb{R}^2, f(x,y)=(x+y,x-y)$


Fonksiyonları birebir orten oldugu icin tersi vardır diyoruz fakat bir turlu bu ıkı fonksiyonun ters fonksiyonlarının tanımlandıgı alanı ve kuralını cıkaramadım simdiden yardımlarınız icin tesekkurler


Edit 1: Ayrıca bu iki fonksiyonun C^k sınıfından olup olmadığını nasıl anlayabiliriz.

24, Ekim, 2017 Lisans Matematik kategorisinde Fatihbulk (14 puan) tarafından  soruldu
24, Ekim, 2017 murad.ozkoc tarafından düzenlendi

Gerek olmasa da (genelini cozebilmek adina) Matris (Lineer Cebir)  biliyor musun? 

Anladığım kadarıyla siz iki fonksiyonun lineer olmasından faydalanıp matrislerden çözeceksiniz fakat bileşenler ya lineer değilse mesela e^x li bir ifade içeriyorsa


0) ilki zaten birebir degil. $6=2\cdot 3=1\cdot 6$

1) ikincisinde lineerlikten faydalanabiliriz. 

2) Lineerlige pek gerek yok fakat lineer olunca isler daha basit olur. Ters matrisi bulmamiz gerekli. 

3) Diyelim ki lineer degil. Tanimi kullanmak yeterli: $\mathbb R^2\to \mathbb R^2$ uzerinde birebir bir fonksiyon dusunursek $$F(a(x,y),b(x,y))=(x,y)$$ verecek  $F$ fonksiyonunu bulacagiz.  Ornek uzerinden daha iyi anlasilir bence. 

_____

$C^k$ dedigin turev ile ilgili herhalde. ilki iki lineer fonksiyonun carpimi istedigin kadar turev alabilirsin. Ikincisi de $f(x)=ax$ gibi bir $f(X)=AX$ fonksiyonu. Zaten coklu tureve giderken matrisler uzerinden tanim veriliyor.  Genel hali icin de turev kurallarini deneyebilirsin zaten, ilkindeki gibi.

https://hizliresim.com/Qp7yzV


Ugrastıgım fonksiyon bu,

c^k sınıfı k. Mertebeye kadar türevini alabilme ve süreklilik sartı herhalde diferansiyellenebiir olduğunu her bir bileşen için diferansiyeli olduğunu göstermek gerekiyor.


Fonksiyonunuzu siteye aktarsanız iyi olur;bir süre sonra oradan silinir çünkü. Çözümü şöyle yapabilirsiniz: Bileşenler sırasıyla $y_1$, $y_2$  ve  $y_3$   olsun. O zaman $f^{-1}(y_1,y_2,y_3)=(x_1,x_2,x_3)$  olur. Burada yapmanız gereken $x_1,x_2,x_3$ bileşenlerini $y_1,y_2,y_3$  cinsinden yazmak. Bu arada $y_3=2x_2.e^{x^3}+x_3$  şeklinde verilmeli, orada yanlış verilmiş. İp ucu olarak $y_1-y_2-y_3=-x_3$  olacaktır.

Cevabınız çok isime yaradı teşekkür ederim. Ayrıca ilk önce siteye yüklemeye çalıştım resmi fakat bir türlü başaramadım. Ama birkez daha deniyebilirim

@Fatih, resimleri gerekmedikce eklememek gerekli. LaTex kodu zor degil, bir iki tane ogrenip sorunuz yazi olarak yazabilirsin. Ilerde makale yazarsan da isine yarar...

...