f düzgün sürekli ise türevi sınırlıdır. [kapalı]

0 beğenilme 0 beğenilmeme
360 kez görüntülendi

f : (0, 1) → R bir noktasal yakınsayan sürekli fonksiyonlar dizisi olsun. Aşağıdakilerden doğru olanı ispatlayınız yanlış olana çürüten örnek veriniz.

1)Eğer f düzgün sürekli ise f' (türevi) sınırlıdır.

2)Eğer f' sınırlı ise f düzgün süreklidir.

notu ile kapatıldı: Soru sahibinin denemelerini yazmasi bekleniyor...
1, Mayıs, 2017 Lisans Matematik kategorisinde EceU (13 puan) tarafından  soruldu
2, Mayıs, 2017 Sercan tarafından kapalı
<p> f duzgun surekli ise turevi vardir turevi var ve kendisi de sureklidir... Fonksiyonel analizde bunun daha genis bir ispati var .Bunun icin fonsiyonel analiz mustafa bayraktar in kitabinda genel olarak dizi almis ve ispatlamis. Oradan bakabilirsin 
</p>

Siz neler düşündünüz? Düşündüklerinizi ekler misiniz?

"f duzgun surekli ise turevi vardir" doğru değil.
Örnek:  $f(x)=\sqrt[3]x$, $[-1,1]$ aralığında düzgün süreklidir ama 0 da türevlenemez.

Bu soruda "fonksiyonlar dizisi" göremiyorum.

...