$$\sum_{k=1}^{\infty}\frac{k^2}{k!}=?$$ Serinin toplami kactir?

2 beğenilme 0 beğenilmeme
116 kez görüntülendi

$$\sum_{k=1}^{\infty}\frac{k^2}{k!}=?$$

3, Ocak, 2017 Lisans Matematik kategorisinde Okkes Dulgerci (1,376 puan) tarafından  soruldu

Lutfen neler denediginizi de ekleyiniz, Okkes hocam. Tesekkurler.

2e olabilir mi?

Soru, ahım şahım çözemeyeceginiz bir soru olmadıgından, siteye katkı için sordugunuzdan gereklı acıklamayı ve cozumu ekledım.

Evet @eynesi  cevap 2e. Eger cozumunuz farkli ise paylasabilirmisiniz?

aslında bent sayılarıyla bır şey cıkıyor tam buna cuk dıye oturan bır ara atar bırı :)

Ben yukarda bosluga konusmusum gibi olmus. Admin de onemsememis pek.

3 Cevaplar

5 beğenilme 0 beğenilmeme

1. Aşama:

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=1+\sum_{k=1}^\infty\dfrac{k^2+2k+1  }{ k!}$$$$=$$$$1+\sum_{k=1}^\infty\dfrac{k  }{ (k-1)!}+2\sum_{k=1}^\infty\dfrac{ 1 }{ (k-1)!}+\color{green}{\sum_{k=1}^\infty\dfrac{  1}{ k!}}$$$$=$$$$\sum_{k=1}^\infty\dfrac{k +1-1 }{ (k-1)!}+2\sum_{k=0}^\infty\dfrac{ 1 }{ k!}+\color{green}{\sum_{k=1}^\infty\dfrac{  1}{ k!}}$$$$1+\displaystyle\sum_{k=2}^\infty\dfrac1{(k-2)!}+\sum_{k=2}^\infty\dfrac{1}{(k-1)!}+\color{green}{3\sum_{k=0}^\infty\dfrac{  1}{ k!}}$$$$=$$$$\color{red}{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}}}}$$


$$-----------------------$$

2. Aşama: 

2,a:

$$2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{1}{(k-1)!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$Yani\quad \boxed{2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}$$
$$-----------------------$$
2,b:

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+\displaystyle\sum_{k=0}^\infty\dfrac{2k}{k!}+\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$\Longrightarrow$$$$\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$ 
$$-----------------------$$
2,c:

$$\boxed{\boxed{e^x=\displaystyle\sum_{k=0}^\infty\dfrac{x^k}{k!}\quad\to\quad e=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$

$$-----------------------$$
Olduğundan;

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$
$$\to$$$$\color{purple}{\boxed{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}=2e}}}}$$ 


4, Ocak, 2017 Anil (7,702 puan) tarafından  cevaplandı
4, Ocak, 2017 Anil tarafından yeniden gösterildi
3 beğenilme 0 beğenilmeme

Daha öz bir metod:


$$\displaystyle\sum_{k=1}^\infty\dfrac{k^2}{k!}=\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}+\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}$$


$$\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}=\displaystyle\sum_{k=2}^\infty\dfrac{k(k-1)}{k!}=\displaystyle\sum_{k=2}^\infty\dfrac{1}{(k-2)!}=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}\tag1$$

$$Ve$$


$$\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$


$$Ve$$

$$e=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$  Olduğundan;

$$\displaystyle\sum_{k=1}^\infty\dfrac{k^2}{k!}=\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}+\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}=2e$$


4, Ocak, 2017 Anil (7,702 puan) tarafından  cevaplandı

quzel bir yol..

2 beğenilme 0 beğenilmeme

Ben soyle cozmustum:


$$e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$  her iki tarafin  $x$  gore iki defa turevini alirsak ve     $x=1$   dersek


$$e=\sum_{k=0}^{\infty}\frac{k(k-1)}{k!}=\sum_{k=0}^{\infty}\frac{k^2}{k!}-\sum_{k=0}^{\infty}\frac{k}{k!}$$ 

$$e+\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=0}^{\infty}\frac{k^2}{k!}$$   ilk terimler 0 oldugundan

$$e+\sum_{k=1}^{\infty}\frac{k}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+\sum_{k=1}^{\infty}\frac{1}{(k-1)!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+\sum_{k=0}^{\infty}\frac{1}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+e=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$ 

4, Ocak, 2017 Okkes Dulgerci (1,376 puan) tarafından  cevaplandı
...