$\mathbb{R}\to SO(2)$, $\theta\mapsto \left(\begin{array}{cc}\cos\theta &\sin\theta\\-\sin\theta&\cos\theta\end{array}\right)$
$SO(2)$ nin bir parametrizasyonudur ve bu parametrizasyona göre, $\frac d{d\theta}$ vektör alanı $SO(2)$ de, her yerde 0 dan farklı bir vektör alanıdır. Teğet uzayı 1 boyutlu olduğu için $\{\frac d{d\theta}\mid_p\}$ $p$ noktadasındaki teğet uzayına bir baz olur. Öyleyse, herhangi bir vektör alanı her $p$ noktasında $f(p)\frac d{d\theta}\mid_p$ ($f$ diferansiyellenbilen bir fonksiyon) şeklinde olmalıdır. Yani, $SO(2)$ nin her (diferansiyellebilen) teğet vektör alan, bir $f:SO(2)\to\mathbb{R}$ diferansiyellenebilen fonksiyonu için $f\frac d{d\theta}$ şeklindedir. Her sürekli teğet vektör alanı sürekli bir $f:SO(2)\to\mathbb{R}$ fonksiyonu için $f\frac d{d\theta}$ şeklindedir.
Manifold oluşu elbette önemli, aksi halde teğet vektörü (ve vektör alanı) kavramı anlamlı olmaz.
Burada, $SO(2)$ her yerde 0 dan farklı bir vektör alanının varlığı ve teğet uzaylarının 1 boyutlu oluşu önemlidir. Benzer şekilde $n$-boyutlu ve $n$ tane her noktada lineer bağımsız vektör alanlarına sahip manifoldlar için benzer bir cevap bulunabilir.