Bir çift zar atıldığında üste gelen sayılar toplamının $3$ olması olasılığı kaçtır?
Bu soruya benzer sitede bir hayli soru olduğunu biliyorum. Ama benim bu soruyu sormam daki gayeyi aşagıda açıklamaya çalışacağım.
Normal olarak; $A=\{(1,2),(2,1)\}$ ,$E=\{(1,1),(1,2),(1,3),...,(6,5),(6,6)\}$ olacak ve istenen olasılık, $\frac{s(A)}{s(E)}=\frac{2}{36}=\frac{1}{18}$ olarak bulunacaktır.
Bir çok sorunun çözümünde belki benimde çözdüğüm bir çok soruda böyle bir yaklaşım kullanılıyor. Orta öğretim kaynaklarında bu tipten sorular bu şekilde çözülüyor. Yani $(1,2)$ ile $(2,1)$, daha genel olarak birinci ve ikinci bileşenleri birbirinden farklı olan sıralı ikililer birbirinden farklı olarak dikkate alınıyor.
Ama benim bu yaklaşıma küçük itirazım var.Tavla oynamayı bilenler bilir. Tavla oyununda kullanılan zarların büyüklükleri,ağırlıkları,renkleri biçimleri vs. aynı, yani zarların özdeştir. Dolayısı ile $(1,2)$ ile $(2,1)$, $(1,3)$ ile $(3,1)$,...,$(6,5)$ ile $(5,6)$ aynı olması gerekmez mi? Yani Örneklem uzay $s(E)=36$ değil de $s(E)=21$ olması gerekmez mi? Bu durumda yukarıdaki sorunun cevabı $\frac{1}{21}$ olmaz mı?