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Abstract

In this paper we consider a formula to get the exact number of nonnegative integer
solution of the equality a1x1 + a2x2 + . . . + arxr = n where a1 , a2 , . . . , ar and n are
fixed integers. Using the obtained formula, we provide a program to list the solutions for
every n and a1 , . . . , ar by Pascal compiler. We then obtain the distribution of an arbitrary
linear combination of discrete random variables based on the proposed algorithm. We also
apply the algorithm to obtain the Maximum Likelihood estimation of the parameters of the
distribution. The accuracy of the algorithm was illustrated using various examples.
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1. Introduction

Appearing in many elementary texts in probability, counting tech-
niques play an important role in computing probabilities in random
experiments such as throwing dice, or classical occupancy problems. As a
result, they have come to form a major part of the mathematics curriculum
in many statistical backgrounds. Example of such literature are seen in
Ross (1976), and Rosen et al. (2000) and so forth.

An interesting problem of counting methods is the number of ways
for placing n identical objects into r distinct cells; this is equivalent to the
number of nonnegative integer solutions of the following equation,

x1 + x2 + . . . + xr = n. (1)

A generalization of this problem is to find the number of nonnegative
integer solutions of

a1x1 + a2x2 + . . . + arxr = n, (2)

where, a1, . . . , ar and n are integer.
Equation (2) is well-known as a Linear Diophantine Equation, for

which the problem of finding bounds on the number of nonnegative
solutions is well studied. Mahmoudvand et al. [4] reviewed these and
presented a new simple method for finding the number of nonnegative
integer solutions of (2) and providing a list of them. The following formula
for the solutions of (2) is the subject of their note:

s(a1, . . . , ar; n)

:=
[n/a1]

∑
w1=0

[(n−a1w1)/a2]

∑
w2=0

. . .
[(n−a1w1−...−ar−2wr−2)/ar−1]

∑
wr−1=0

I(ar; w1, . . . , wr−1), (3)

where I(ar; w1, . . . , wr−1) =

{
1 if ar|n− a1w1 − . . .− ar−1wr−1

0 otherwise.

Proof. Let us first consider ai = 1 for i = 2, . . . , r in (2). In this case, we
must find the number of nonnegative integer solutions for

a1x1 + x2 + . . . + xr = n. (4)

For solving (4), we can give the possible values of x1 and reform (4) to
form (1). Therefore,

[n/a1 ]

∑
w1=0

(
n− a1w1 + r− 2

r− 2

)
(5)
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is the number of nonnegative integer solutions for equation (4), where [u]
is the integer part of u and r > 2 is a positive integer. If r = 2 we must

use
[n/a1 ]

∑
w1=0

I(a2, w1) as the number of nonnegative integer solutions, where

I(a2, w1) =

{
1 a2|n− a1w1

0 otherwise.
(6)

Now, let ai = 1 for i = 3, . . . , r . In this case, we must find the number of
nonnegative integer solutions for

a1x1 + a2x2 + x3 + . . . + xr = n. (7)

For solving (7), we can give the possible values of x1, x2 and reform (7) to
form (1). Therefore,

[n/a1 ]

∑
w1=0

[(n−a1w1)/a2 ]

∑
w2=0

(
n− a1w1 − a2w2 + r− 3

r− 3

)
(8)

is the number of nonnegative integer solutions for this equation,
where r > 3 is a positive integer. However, if r = 3 we use
[n/a1 ]

∑
w1=0

[(n−a1w1)/a2 ]
∑

w1=0
I(a3, w1, w2) as the number of nonnegative integer solu-

tions, where

I(a3, w1, w2) =

{
1 a3|n− a1w1 − a2w2

0 otherwise
(9)

Continuing the procedure, we can get the following formula for the
number of nonnegative integer solutions of (2):

s(a1, . . . , ar; n)

:=
[n/a1 ]

∑
w1=0

[(n−a1w1)/a2 ]

∑
w2=0

. . .
[(n−a1w1−...−ar−2wr−2)/ar−1 ]

∑
wr−1=0

I(ar; w1, . . . , wr−1) (10)

where

I(ar; w1, . . . , wr−1) =

{
1 ar|n− a1w1 − . . .− ar−1wr−1

0 otherwise.
(11)

Note also that if ai = 1 for all i , then s(a1, . . . , ar; n) is equal to (n+r−1
r−1 ) ,

since

s(a1, . . . , ar; n) =
n

∑
w1=0

n−w1

∑
w2=0

. . .
n−w1−...−wr−2

∑
wr−1=0

1
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=
n

∑
w1=0

n−w1

∑
w2=0

. . .
n−w1−...−wr−3

∑
wr−2=0

(
n−w1 − . . .−wr−2 + 1

1

)

=
n

∑
w1=0

n−w1

∑
w2=0

. . .
n+1−w1−...−wr−3−1

∑
wr−2=0

(
1 + wr−2

1

)
.

Now equality is obtained using the fact that
n−m
∑

k=0
(m+k

m ) = (n+1
m+1) . ¤

It has been shown that the number solutions of (2) with some
constraints placed on the xi ’s can be expressed as a function of the number
solutions of (2) without any bounds on xi ’s (for details, see Eisenbeis et al.
[1]). As an example, suppose that we desire to determine the number of
positive integer solutions of (2); letting xi = zi + 1 for each i yields

a1z1 + a2z2 + . . . + arzr = n− a1 − . . .− ar , (12)

to be solved in nonnegative integers. Therefore using (12) the number of

positive integer solutions of (2) is s
(

n− r
∑

j=1
a j, a1, . . . , ar

)
.

2. An application

2.1 Distribution
There are many problems which can be solved using the proposed

algorithm. As a useful example, we use the algorithm to obtain the
distribution of a linear combination of r independent discrete random
variables.

Let X1, . . . , Xr be discrete random variables from a discrete distribu-
tion. Suppose a1, . . . , ar are arbitrary fixed integer values. One problem
that of some interest is in finding the distribution of the random variable
Y = a1X1 + . . . + arXr . Let the support of variable Y , the set of all possible
values that Y can assume, be denoted by SY . Moreover, let the support
of X also be denoted by SX = {0, 1, . . .} . Using the method proposed by
Mahmoudvand et al. in [4], it is easy to write:

fY(n) = P[a1X1 + . . . + arXr = n]

=
m

∑
i=1

P[X1 = xi1 , . . . , Xr = xir ], n ∈ SY (13)

where m = s(a1, . . . , ar; n) and the (xi1 , . . . , xir) are vectors of the
solutions for equation (2). If the Xi ’s are independent, then equation (13)
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is simplified to:

fY(n) =
m

∑
i=1

r

∏
j=1

P[X j = xi j ], n ∈ SY (14)

Let us study an example. Consider the independent random variables
X1, . . . , X5 , sampled from a Poisson distribution with mean 1. For these
Xi one may use the formula proposed in [4] to calculate the distribution
of the linear combination

Y = 3X1 + 7X2 + 5X3 + 4X4 + 2X5 .

Using formula (14) one therefore has

fY(n) =
m

∑
i=1

5

∏
j=1

e−1

xi j !
=

m

∑
i=1

e−5

5
∏
j=1

xi j !
, n = 0, 2, 3, 4, . . . , (15)

where m and the xi j ’s are defined above.

Table 1 shows the results of numerical calculations of such prob-
abilities for various n in this problem, based on (14). To evaluate the
importance of these calculations we provide the normal approximation
of these probabilities also.

Table 1
Probability distribution of Y by exact and Normal Approximation

n 0 1 2 3 4 5 6 7 8 9 10

Exact 0.007 0.000 0.007 0.007 0.010 0.013 0.011 0.024 0.017 0.026 0.026

Normal
approxi- 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.005
mation

As it seen from Table 1 there are meaningful differences between
the exact and approximated probabilities. As an illustration of this fact,
we plot the Cumulative Distribution Function (CDF) of Y with Exact and
Normal Approximation in Figure 1.

2.2 Maximum Likelihood estimation

We may also apply formula (3) to obtain the Maximum Likelihood
estimation of the parameters of the distribution. Consider the linear
combination Y from above and Let X1, . . . , Xr be a random independent



6 R. MAHMOUDVAND ET AL.

Figure 1
Cumulative Distribution Function of Y with the exact (solid line)
and normal approximation (dash line) methods

sample from Poisson distribution with mean λ . Adopt the new conven-
tion Y = n ; we wish to obtain a Maximum Likelihood Estimation (MLE) of
λ . The likelihood function is as follows:

L(λ, n) =





e−rλ n = 0

e−rλλd n = 1
m
∑

i=1

r
∏
j=1

e−λλ
xi j

xi j
! otherwise,

where d is the number of coefficients ai equal to 1. The MLE of λ is thus:

λ̂MLE =





0 n = 0
d
r n = 1

λ0 otherwise,

where λ0 is a solution of the following equality:

m

∑
i=1

λxi.−1[xi. − rλ]
r

∏
j=1

xi j

= 0, (16)

and xi· =
r
∑

j=1
xi j .
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3. Computation using pascal code

Here we provide a program by Pascal compiler to obtain the solu-
tions by using the formula of Mahmoudvand et al. (2009). Consider the
following procedure composed of r− 1 nested for loops:

count := 0
for w1 := 0 to [ n / a1 ]
for w2 := 0 to [( n− w1 a1 )/ a2 ]

for w3 := 0 to [( n− w1 a1 −
w2 a2 )/ a3 ]

.

.

.
for wr−1 := 0 to [( n − w1 a1 −

. . .−wr−2 ar−2 )/ ar−1 ]
if ar |n− w1 a1 − . . . −

wr−1 ar−1 then
count:= count+ 1

The value of count upon exit from this proce-
dure is thus s(a1 , . . . , ar , n) . we provide a program that
may be applied for every r .

type
dlist = ˆ node;
node = record
befor:dlist;
fact:integer;
high:integer;
index:integer;
next:dlist;

end;
var

list,l,first,last:dlist;
i,x,n,s,ar,k:integer;

{−−−−−−−−}
procedure insertlist(var list:dlist;x:integer);
var

temp,l:dlist;
begin

new(temp);
temp ˆ .befor:=nil;
temp ˆ .high:=n div x;
temp ˆ .index:=0;
temp ˆ .next:=nil;

if list=nil then
list:=temp

else
begin

l:=list;
while(l ˆ .next <> nil) do
l: = ˆ .next;
l ˆ .next:=temp;
temp ˆ .befor:=l;

end;

end;
{−−−−−−−}
function test1:boolean;
var l:dlist;
begin

test1:=true;
l:=list;

while(l <> nil) do
begin

if l ˆ .index > l ˆ .high then
test1:=false;
l:=l ˆ .next;
end;

end;
{−−−−−−−−}
procedure print;
var l:dlist;
s:integer;
begin

l:=list;
s:=0;

while(l <> nil) do
begin

write(l ˆ .index, ”);
s:=s+l ˆ .fact*l ˆ .index;
l:=l ˆ.next;

end;
if((n-s) mod ar)=0 then
begin

write((n-s)div ar);
writln;

end
else
begin

write( #13 );
write(’ ’);
write( #13 );
end;

end;
{−−−−−−−}
begin

list:=nil;
i:=1;
write(’enter the number of terms:’);
readln(k);
write(’enter the value of n:’);
readln(n);

for i:=1 to k-1 do
begin

write(’enter a’,i,’:’); readln(x);
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insertlist(list,x); end; write(’enter
a’,k,’:’);

readln(ar)
if list=nil then

exit;
l:=list;
while(l ˆ .next <> nil) do
l:=l ˆ .next;
last:=l;
first:=list;
writeln;

while(first ˆ .index <= first ˆ
.high)do

begin
if test1 then
begin

print;
last ˆ .index:=last ˆ .index+1;

end;
l:=list ˆ .next;

while(l ˆ .index <= l ˆ .high) and
(l <> nil) do

l:=l ˆ .next;
if(l <> nil) then

begin
l:=l ˆ .befor;
l ˆ .index:=l ˆ .index+1;

if(l ˆ .index <= l ˆ .high) then
begin

l:=l ˆ .next;
while(l <> nil) do
begin

l ˆ .index=0;
l:=l ˆ .next;

end;
l:=list;
s:=0;

while(l <> nil) do
begin

l ˆ .high:=(n-s) div l ˆ .fact;
s:=s+l ˆ .fact*l ˆ .index;
l:=l ˆ .next;
end;
end;
end;

end;
readln;

end.
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