
Proof of Cesaro Means

In order to show that our alternative definition of entropy rate:

H
′
(X) = lim

n→∞H
(
Xn | X1, . . . , Xn−1

)
is equivalent to the canonical definition

H(X) = lim
n→∞

1

n
H(X1, . . . , Xn)

when the stochastic process is stationary, we used the following theorem

Theorem Cesaro Means:
Let an → a, let bn = n−1 ∑n

i=1 ai, then

lim
n→∞ bn = a.

Proof Recall the meaning of limn→∞ bn = a:
For every δ > 0 there exists a nδ such that, for every n > ndelta, ‖bn−a‖ < δ.

Now, since limn→∞ an = a, we know that ∀ε, ∃nε such that ∀n > nε, |an−a| <
ε.

Choose δ = 2ε.

Fix, ε, determine nε, let n >> nε, and look at bn − a.
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Now divide the sum on the right hand side into two parts: the first is the
sum over the indexes between 1 and nε, the second is the over the remaining
terms
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We are now going to bound the two sums (1) and (2).

First we bound (1)∣∣∣∣∣1n
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and, if we pick n satisfying

n >
nε maxnε

j=1 |aj − a|
ε

,

then sum (1) satisfies
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Now we bound (2) using a similar trick∣∣∣∣∣1n
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where Inequality 5 is a consequence of how we selected nε.

We have therefore shown that, if we fix δ, let ε = δ/2, determine nε, there

exists a nδ =
nε maxnε

j=1|aj−a|
ε such that, for all n > nδ, |bn − a| < δ;

In other words, we have shown that limn→∞ bn = a.
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