$\sqrt{12-\sqrt{44}}=x $ old.göre $10$'un $x$ cinsinden değeri nedir ?

0 beğenilme 0 beğenilmeme
134 kez görüntülendi

$\sqrt{12-\sqrt{44}}=x $ bu ifade şöyle düzenlediğim de

 burada her iki tarafın karesini alıyorum ama sonuca ulaşamadım.

13, Kasım, 2016 Orta Öğretim Matematik kategorisinde mosh36 (2,125 puan) tarafından  soruldu
13, Kasım, 2016 mosh36 tarafından düzenlendi

Her iki tarafın karesini alın. Köklü terimi yalnız bırakın, kare alın.

Dördüncü dereceden denklemde 100'ü yalnız bırakın, Her iki tarafın karekökünü alın.



2 yi alınca içerde 11 kaldı .)

$ 12-x^2=\sqrt{44} $

Tekrar kare alın.

144-44=100

suitable hocam $x^4 = 100$ buradan nereye varacağımı anlamadım

3 Cevaplar

1 beğenilme 0 beğenilmeme

İpucu:

$$\sqrt{12-\sqrt{44}}=\sqrt{12-2\sqrt{11}}=\sqrt{(\sqrt{11}-1)^2}=\sqrt{11}-1=x$$

13, Kasım, 2016 murad.ozkoc (9,542 puan) tarafından  cevaplandı
1 beğenilme 0 beğenilmeme

İçerideki kök $44$'ü $2$ kök $11$ olarak yazarsak 

$x=\sqrt{11}-1$ olur.

İki tarafa da $1$ ekleyip karesini alırsak

$(x+1)^2=11$ olur.Bize $10$'un $x$ cinsinden değeri soruluyorsa iki taraftan da $1$ çıkaralım ki $10$'a ulaşalım.

$(x+1)^2-1=10$ olacaktır.

14, Kasım, 2016 baykus (1,059 puan) tarafından  cevaplandı

teşekkürler dostum

1 beğenilme 0 beğenilmeme

Murad'in verdigi dogru bir ifade fakat Baykus neden o sekilde yazilabilecek dedi, o da dogru fakat baska sekilde yazilamaz mi? 

Bircok sekilde yazilir. Eger bes secenek varsa sen bunlardan 4unu elersin 5.si sadece bir ifadesi olur. Bu sekilde bu soruya cevap vermek biraz zor.

Birkac tane yazalim. $x-\sqrt{12-\sqrt{44}}=0$ oldugundan $$10+(x-\sqrt{12-\sqrt{44}})$$ olabilir. $a \in \mathbb R$ icin $$10+a(x-\sqrt{12-\sqrt{44}})$$ olabilir. $a,b,c \in \mathbb R$ icin $$10+a(x-\sqrt{12-\sqrt{44}})+b(x-\sqrt{12-\sqrt{44}})^2+ c(x-\sqrt{12-\sqrt{44}})^3$$ olabilir. Tabi Baykus'un da belirttigi gibi $$(x+1)^2-1=x^2+2x$$ de olabilir.

15, Kasım, 2016 Sercan (24,065 puan) tarafından  cevaplandı

teşekkürler hocam :) anlamsızca formülü bilmek yerine bunları bildiğim zaman daha iyi anlıyorum

...