Bertrand'in Faraziyesinin $n\le 4000$ icin saglandigi

2 beğenilme 0 beğenilmeme
35 kez görüntülendi

Sav: $n\ge1$  icin $n<p\le 2n$ sartini saglayan bir asal $p$ sayisi vardir.

Bu Sav'in $n \le 4000$ icin dogru oldugunu gosteriniz. Bunu gostermek icin en az kac asal sayi secmek yeterli olur? 

6, Eylül, 2016 Orta Öğretim Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu
6, Eylül, 2016 Sercan tarafından düzenlendi

bu upperbound en son kaçtı? internette açmışlardı sanırım .

kategorisi akademik degıl mı bunun :) , 70.000 000 için bile dünya sallanmıştı.

Kendisi  uc milyona kadar dogrulamis. ispatlanmis bi teorem su an.

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

Yapmamız gereken şey,  $1\le p\le4000$   ve  $p$  bir asal sayı olmak üzere,  $(p,2p]$  aralığında en az bir asal sayı olduğunu göstermek. Çünkü, $p$  asal sayı olmak üzere her $p$ sayısı için  $(p,2p]$ aralığında en az bir asal sayı olduğunu göstermek, teoremi tüm doğal sayılar için doğrular(kolayca gözlemleyebilirsiniz). Bunun için seçeceğimiz asal sayılar: 

$2,3,5,7,13,23,43,83,163,317,631,1259,2503,4001$ olabilir. Dikkat ederseniz, listedeki bütün asal sayılar kendisinden önceki asalın iki katından küçük en büyük asal sayıdır($4001$ hariç). Sonuç olarak kanıtımız için en az listemizdeki asalların sayısı kadar asal sayı seçmeliyiz, yani  $14$  tane.


6, Eylül, 2016 Rimmerian (99 puan) tarafından  cevaplandı
6, Eylül, 2016 Sercan tarafından seçilmiş

Soruyu hafif degistirdim, pek fark etmiyor. Ilk haline gore $2$'yi bosa dahil etmis olurduk fakat su an $2$'nin olmasi mecburi. $n=4000$ icin bir asal sayi yok listede, bu nedenle $3989$ yerine $4001$ asalini secmek daha uygun olur.

Haklısınız,  $n=4000$'i gözden kaçırmışım. Düzelttiğiniz için teşekkürler!

...