$(1+x)^\alpha = 1 +\frac{\alpha} {1!} x +\frac{ \alpha(\alpha-1)}{2!}x^2 +\cdots+ \frac{\alpha(\alpha-1).... (\alpha-k + 1)}{k!}x^k +\cdots$ $\alpha \in\mathbb{ R}$

0 beğenilme 0 beğenilmeme
59 kez görüntülendi

$(1+x)^\alpha = 1 +\frac{\alpha} {1!} x +\frac{ \alpha(\alpha-1)}{2!}x^2 +\cdots+ \frac{\alpha(\alpha-1).... (\alpha-k + 1)}{k!}x^k +\cdots$

$\alpha \in\mathbb{ R}$ , bu esitligin dogru oldugunu nasil gosterebilirim. X eleman [0 ,1) ve x eleman (-1,1) icin.

23, Nisan, 2015 Lisans Matematik kategorisinde cey cey (11 puan) tarafından  soruldu
23, Nisan, 2015 DoganDonmez tarafından düzenlendi
Ali Nesin Temel Analiz II açık ders notları sayfa 665 de bulabilirsiniz:

Binom açılımı uygulanırsa olur gibi !

$\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$ olarak seri şeklinde yazılabilir. Fakat bu seri fonksiyona hangi aralıkta yakınsar, bu kısım da önemli.

Şu an sayfa başında olan bu soru da incelenebilir. 

...