$21!.22!.K$ çarpımının $17$ ile bölümünden kalan kaçtır?

0 beğenilme 0 beğenilmeme
67 kez görüntülendi

$K=\frac{3^2+3.3+1}{4!.5!}+\frac{4^2+3.4+1}{5!.6!}+\cdots+\frac{20^2+3.20+1}{21!.22!}$

olduğuna göre $21!.22!.K$ çarpımının $17$ ile bölümünden kalan kaçtır?

18, Haziran, 2016 Orta Öğretim Matematik kategorisinde sonelektrikbukucu (2,871 puan) tarafından  soruldu
$21!.22!.K$   burada 21! ve 22! oldugundan direkt olarak 17 ile tam bölünmez mi?

Tüm terimlerde değil, son $4$ terim tam bölünmüyor onun harici bölünüyor. Ama o işlemler bana uzun gibi geldi, deneme sorusu çünkü.

haklısın gene odunumsu düşündüm artık karızmatık düşünmem gerek kaç ay geçti de mi :)

Öyle demeyelim ilk bakışta gözden kaçmış diyelim :)

1 cevap

0 beğenilme 0 beğenilmeme
 
En İyi Cevap

merhabalar

$ \frac{3^2+3.3+1}{4!.5!}+\frac{4^2+3.4+1}{5!.6!}+\cdots+\frac{20^2+3.20+1}{21!.22!}=\sum_{3}^{20}\frac{k^2+3k+1}{(k+1)!(k+2)!} $
olarak ifade edilebilir

$  \sum_{3}^{20}\frac{(k+2)(k+1)-1}{(k+1)!(k+2)! }  =  \sum_{3}^{20}\frac{(k+2)(k+1) }{(k+1)!(k+2)! } -  \sum_{3}^{20}\frac{1 }{(k+1)!(k+2)! } $

gerekli sadeleştirmeler yapıldıktan sonra toplam sembolü içinde 

$  \frac{1 }{(k)!(k+1)!}- \frac {1}{(k+1)!(k+2)!}   $ elde edilir

taraf tarafa alttaki ifadeler toplanır.

 $\frac{1 }{(3)!(4)!}- \frac {1}{(4)!(5)!}$ 

$  \frac{1 }{(4)!(5)!}- \frac {1}{(5)!(6)!}   $

...

$  \frac{1 }{(20)!(21)!}- \frac {1}{(21)!(22)!}$

K=$  \frac{1 }{(3)!(4)!}- \frac {1}{(21)!(22)!}$  
 $\left (   \frac{1 }{(3)!(4)!}- \frac {1}{(21)!(22)!}    \right ).21!. 22!$
$ \left (   \frac{21!.22! }{3!4!}- 1\    \right ) $

bu sayı ise 17 modülünde -1 denktir.

Dolayısıyla kalan 16 bulunur

iyi çalışmalar

18, Haziran, 2016 matbaz (2,681 puan) tarafından  cevaplandı
18, Haziran, 2016 sonelektrikbukucu tarafından seçilmiş

Teşekkürler hocam.

rica ederim, her ne kadar latex yazmaya yeni başlayıp biraz uğraşsam da yazmak için, benim için keyiftir, sevgiler, saygılar..

...