$\displaystyle\int e^x \frac{1+\sin x}{1+\cos x} dx$ integrali icin cozum yollari

2 beğenilme 0 beğenilmeme
70 kez görüntülendi

$$\displaystyle\int e^x \frac{1+\sin x}{1+\cos x} dx$$ integralini bulunuz.

(Cevaplar kafmdaki cozumden farkli gelirse cevabi paylasirim. Farkli cozum yollari alinir. Yonlendirme olmasin diye icerige eklemiyorum).

28, Mayıs, 2016 Lisans Matematik kategorisinde Sercan (23,213 puan) tarafından  soruldu

kategorı ortaogretım gibi.  (:p)

Cozume gore degistiririm. Benim cozumum de orta ogretim zaten.

ben en basıtını suanda yazıyorum

1 cevap

4 beğenilme 0 beğenilmeme
 
En İyi Cevap

Başka yöntemler bulayım dedim ilk olarak kısmiyi denedim kısmide her integrasyonu tamamladım ama geriye kalan $\displaystyle\int \dfrac{e^x.dx}{1+cosx}$ teriminin entegrasyonunu beceremedim.

Farklı bir çözüm bulurum diye mse de woframda falan baya aradım ama bulamadım, geriye ilk akla gelen çözüm kaldı "malesef".


$\displaystyle\int e^x \dfrac{1+\sin x}{1+\cos x} dx=\displaystyle\int e^x \left(\dfrac{1+2sin(x/2).cos(x/2)}{2cos^2(x/2)} \right)dx$


$=\Huge\displaystyle\int$ $ \underbrace{e^x \left(\underbrace{\dfrac{1}{2}.sec^2(x/2)}_{(tan(x/2))'} +tan(x/2)\right)}_{e^x.a+e^x.a'}dx$


yani integral $(e^x.a)'=e^x.a+e^x.a'$ gibiymiş dolayısıyla,

$\boxed{\boxed{\displaystyle\int e^x \dfrac{1+\sin x}{1+\cos x} dx=\displaystyle\int(e^x.tan(x/2))' dx=e^x.tan(x/2)+C}}$  olur

28, Mayıs, 2016 Anil (7,670 puan) tarafından  cevaplandı
28, Mayıs, 2016 Sercan tarafından seçilmiş

Ben de buradan cozmustum. Baska cozum olursa da kabulum. 

...