$\binom{2^n-1}{k}$ sayısı her zaman tek midir?

3 beğenilme 0 beğenilmeme
78 kez görüntülendi

$n$ bir pozitif tam sayi ve $0\le k \le 2^n-1$ de bir tam sayi olmak uzere $$\displaystyle\binom{2^n-1}{k}$$ her zaman tek bir sayi midir?

23, Mayıs, 2016 Orta Öğretim Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu

3 Cevaplar

0 beğenilme 0 beğenilmeme

$\sum_{k=0}^{2^n-1}\displaystyle\binom{2^n-1}{k}=\displaystyle\binom{2^n-1}{0}+\displaystyle\binom{2^n-1}{1}+\displaystyle\binom{2^n-1}{2}+...+\displaystyle\binom{2^n-1}{2^n-1}$ toplamında $2^n$ sayıda terim bulunmaktadır.Toplam:

$\sum_{k=0}^{2^n-1}\displaystyle\binom{2^n-1}{k}=2^{2^n-1}$ olup çift bir sayı olduğundan ya tüm terimler çift,ya tüm terimler tek, ya da en az iki terim çifttir. İlk teri tek olduğundan tüm terimlerin çift olma durumu mümkün değildir. O zaman ya tüm terimler tektir ya da en az iki terim çifttir.  Bu toplamın herhangi bir terimi $0\leq k\leq2^n-1$ olmak üzere $\displaystyle\binom{2^n-1}{k}$ olsun. $\displaystyle\binom{2^n-1}{k}=\frac{(2^n-1)(2^n-2)(2^n-3)...(2^n-k)}{k!}$ bu ifadenin hem payında hemde paydasında eşit sayıda $2$ çarpanı vardır(?), dolayısıyla sadeleşmeden sonra iki tek sayının birbirine bölümü kalın. Bölüm tek sayı olacaktır. Böylece toplamdaki her bir terimin tek olduğu söylenebilir.

23, Mayıs, 2016 Mehmet Toktaş (18,358 puan) tarafından  cevaplandı
24, Mayıs, 2016 Mehmet Toktaş tarafından düzenlendi

"Ya tüm terimler tektir, ya da en az iki terim çifttir." Bu dogru bir cikarim fakat nerede kullandik?


"$\displaystyle\binom{2^n-1}{k}=\frac{(2^n-1)(2^n-2)(2^n-3)...(2^n-k)}{k!}$ bu ifadenin hem payında hemde paydasında eşit sayıda $2$ çarpanı vardır(?)" sorunun dengi bu zaten hocam. Tek olmasi pay ve paydadaki $2$'nin kuvvetlerinin esit olmasi gerek. Cevap soruyu kabul etmis olmuyor mu bu durumda? Cunku soru da "hem payinda hem paydasinda esit $2$ carpani var mi?".

İşte işin en önemli yerine bende biraz da yorulduğum için "?" koydum. Bana biraz uzun ve sıkıcı gibi geldi bıraktım. Elbetteki açıklanması,gösterilmesi gerekiyor. Belki bu kısmı siz yaparsınız:))

1 beğenilme 0 beğenilmeme

Pascal üçgenini düşünelim.Pascal üçgeninde her satırdaki sayı, üst satırdaki en yakın iki sayının toplamıdır. (Yani: $\binom{m}{k}=\binom{m-1}{k-1}+\binom{m-1}{k}\ (0<k<m)$ için), 

$\binom{2^n}{k}$ nın, $(0<k<2^n)$ için, çift olduğu ($k$ da yeterince 2 nin kuvveti olmadığından)  kolayca görülür. Pascal üçgeninde bu satır 1 çift çift çift çift .....çift 1 şeklindedir.

($\binom{2^n-1}{0}=\binom{2^n-1}{2^n-1}=1$ olduğu zaten açıktır.)

$\binom{2^n}{1}=\binom{2^n-1}{0}+\binom{2^n-1}{1}=1+\binom{2^n-1}{1}$ olduğu için $\binom{2^n-1}{1}$ tek olmalıdır.

Daha sonra $\binom{2^{n}}{2}=\binom{2^n-1}{1}+\binom{2^n-1}{2}$ den $\binom{2^n-1}{2}$nin tek olduğu benzer şekilde görülür. 

Bu şekilde, devam edilerek $\binom{2^n-1}{k}\ (0<k<2^n-1)$ nin tek sayı olduğu elde edilir.  

23, Mayıs, 2016 DoganDonmez (3,534 puan) tarafından  cevaplandı
23, Mayıs, 2016 DoganDonmez tarafından düzenlendi

$2^{n-1}$'ler $2^n-1$ olmali, galiba.

Teşekkürler, düzelttim.

1 beğenilme 0 beğenilmeme

Ben de bugun bir ispatla ugrasirken dusundum bu cikarimi ve dogru olacagina inandim. Ispatini da yaptim. Benim ispatim da su sekilde:

Kullandigim: $a$ ile $2^k-a$ sayilarini tam bolen maksimum $2$ kuvveti aynidir. 

Ispati:  (aşırı dolambaçsız bir şekilde)
$2^b \mid a$ ise $2^k-a=2^k-2^ba_1=2^b(2^{k-b}-a_1)$ olur.
$2^c \mid (2^k-a)$ ise $a=2^k-(2^k-a)$ da $2^c$ sayisina tam bolunur.

Tabi burada $b,c \le k$ olacagi bariz. Bu cikarim bize binom aciliminda hic $2$'nin kati olamayacagini verir.

23, Mayıs, 2016 Sercan (23,218 puan) tarafından  cevaplandı
...