$log5 = 0,699 $ eşitliği veriliyor. Buna göre , $2^{50}$ sayısı kaç basamaklıdır? - Matematik Kafası

$log5 = 0,699 $ eşitliği veriliyor. Buna göre , $2^{50}$ sayısı kaç basamaklıdır?

0 beğenilme 0 beğenilmeme
1,102 kez görüntülendi

Yine nasıl yapacağımı anlayamadığım bir soru 

15, Mayıs, 2016 Orta Öğretim Matematik kategorisinde Şahmeran (1,235 puan) tarafından  soruldu
16, Mayıs, 2016 Şahmeran tarafından yeniden açıldı

ipucu

$1=log5+log2$

$x=2^{50}$ sayısının her iki tarafının logaritmasını alırsanız...

İpuçları için teşekkürler , hemen deniyorum.

bence soruyu acıp, cozumunu paylaş :)

1 cevap

0 beğenilme 0 beğenilmeme

$log5+log2=1$

$1-log5=log2$ 

O halde $1-0,699=log2$

$log2=0,301$


$2^{50}=x$  dersek ,

$50.log2=logx$

$15,05=logx$ olur. logx'in ondalık açılımındaki tam kısmın 1 fazlası bize basamak sayısını verir. O halde x , 16 basamaklı bir sayıdır. 

16, Mayıs, 2016 Şahmeran (1,235 puan) tarafından  cevaplandı

neden tam kısmının 1fazlası bıze basamak sayısını verıyor acıklarmısınız?

Bildiğim kadarıyla tabi , ama doğru olmayabilir emin değilim. 

Logaritmanın tam kısmına karakteristik denir.(Kitapta öyle demiş,ben demedim) Karakteristik verili tabanın kaçıncı üssünde olduğumuzu belirtir. Bir sayının onluk tabanda logaritmasının karakteristiği , o sayının onluk tabanda kaç basamakla yazılacağını gösterir. Karakteristiğin bir fazlası da basamak sayısıdır. 

Daha fazla anlatabileceğimi sanmıyorum. Biraz kitap , biraz internetle bu kadar oldu maalesef. 

hiç ezbere gerek yok ve lütfen ezberleme, güzelim zekanı çöpe atma:)

$15,05=logx$

$10^{15+0,05}=x$

$\underbrace{10^{15}}_{15\;basamaklı\;sayı}.\underbrace{10^{0,05}}_{ve\;birseyler\;daha}=x$

Valla bu kadarını bile kendi kendime öğrenmeye çalıştım , bir öğretselerdi bir daha unutmazdım ama malum sistemimiz işte :) 

...