$a_1=10^{10^{10}}$ ve $n \ge 1$ icin $a_{n+1}=\left(\frac{6n+5}{7n+1}\right)a_n$ ise $a_n$ dizisi yakinsak midir?

0 beğenilme 0 beğenilmeme
52 kez görüntülendi

$a_1=10^{10^{10}}$ ve $n \ge 1$ icin $$a_{n+1}=\left(\frac{6n+5}{7n+1}\right)a_n$$ ise $a_n$ dizisi yakinsak midir? Yakinsak ise yakinsadi deger nedir?

28, Nisan, 2016 Orta Öğretim Matematik kategorisinde Sercan (24,012 puan) tarafından  soruldu
9, Haziran, 2016 Sercan tarafından yeniden kategorilendirildi

genel terimi bulursak tamamdır:)

Bulabilirsin. Bulmadan da cozumu var.

1 cevap

0 beğenilme 0 beğenilmeme

$a_0$ sifir olmayan gercel bir sayi ve $$\lim\limits_{n\to\infty}\left(\frac{6n+5}{7n+1}\right)=\lim\limits_{n\to\infty}\left(\frac{6+5/n}{7+1/n}\right)=\frac67$$oldugundan$$\lim\limits_{n \to\infty} a_n=\lim\limits_{n\to\infty}a_0\left(\frac{6n+5}{7n+1}\right)^{n-1}=0$$ olur.

9, Haziran, 2016 Sercan (24,012 puan) tarafından  cevaplandı
...