$A$ matrisinin çarpma işlemine göre tersi

0 beğenilme 0 beğenilmeme
74 kez görüntülendi

$A$, çarpma işlemine göre tersi olan ve $n \times n$ boyutlarında bir kare matris olduğuna göre $n=2$ ve $n=3$ için $A^{-1}=\frac{1}{det(A)}.Ek(A)$ olduğunu ispatlayınız. Ayrıca $n=2,3$ değerlerinden yola çıkarak herhangi bir $n$ tamsayısı için tümevarımla veya başka ispat yollarından bu ispat yapılabilir mi?

22, Nisan, 2016 Lisans Matematik kategorisinde sonelektrikbukucu (2,871 puan) tarafından  soruldu

yakup inanır mısın 4x4 matrix yazardım 16tane harf,

çarpma ters alma falan hepsini saatlerce yazardım:)

en elementer ispatları yapardım:)

Sen yazardın da ben okur muydum o kadar uzun bilmiyorum :)

4. dereceden denklemler için "Angarya" işi bir çözümüm var ama sanırım 2sayfa sürer:) neyse bu soruna odaklanalım. iyi çalışmalar sayın Yakup arkadaşım.

birde Ek(A) nedemek açıklamalısın .

Size de iyi çalışmalar sayın foton yiyen Anıl :) $Ek(A)$ (nedense takıntı olmuş matematiksel ifadeleri ille kodla yazıyorum) A'nın ek matrisi yani matrisin her elemanının ayrı ayrı kofaktörü alınmış halinin transpozu.

Bu soru cevaplandiktan sonra sunu sormak lazim bence: "Gaus Eleme" motodu "elle" daha kolayken neden "bu sayfalarca suren method"? 

gaus eleme metodunu bilmediğim için:)

$[A\;|\; I] \to [I\; | \; A^{-1}]$ link

...