$(14!)^2+1$ asal bir sayi mi?

5 beğenilme 0 beğenilmeme
50 kez görüntülendi

$(14!)^2+1$ asal bir sayi mi?  

Neden asal oldugunu ya da olmadigini matematiksel olarak ispatlayiniz. 

22, Nisan, 2016 Orta Öğretim Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu

 $n,k\in N^+$ olmak üzere, Eğer  $(1.2.3...14)^2+1=(n^{3k})^2+1=n^{6k}+1=(n^{2k}+1)(n^{4k}-n^{2k}+1)$, olarak yazılabiliyor ise, asal olmaz.  Demek ki $14!=n^{3k}$ biçiminde yazılabilir mi? diye düşünmeliyiz. $p$ asal bir sayı olmak üzere,en azından $2\leq p\leq 13$ için her $p$'nin kuvveti küp değildir. Dolayısıyla $(14!)^2+1$ asal olamaz diye düşünüyorum.

ben şöyle düşündüm

bir a tam sayısını alalım 0dan ve 1 den farklı olan

tüm ifadeyi a ya bölelim

$\dfrac{(14!)^2+1}{a}$  eğer sonuç bir tam sayı ise asal değildir.


$\dfrac{(14!)^2}{a}+\underbrace{\dfrac{1}{a}}_{(1\equiv (\mod a))}$


yani öyle bir  a sayısı seçicezki $14!$ yi böldüğünde elde edilen kalanın karesi ile 1in toplamı a'nın katı olucak eğer olmassa asal diyeceğiz ozaman

$14!=a.k+f$ gibi olmalı

$(14!)^2=a^2.k^2+f^2+2a.k.f$         (1 < f < a)

oldugundan

$(14!)^2+1=a^2.k^2+f^2+2a.k.f+1$ burada incelememiz gereken


$f^2+1$  a ile bölündüğündeki durumdur devamı gelmedi.



Ben modular aritmetik ile Wilson teoremini kullanarak buldum, daha degisik yontemler de olabilir elbet.

kuramsal eğitime hayır! :)

Sercan bey, sizin yaklaşımınızı görsek:))

Paylastim hocam.

1 cevap

1 beğenilme 0 beğenilmeme

$$14!\times 14! \equiv 1\cdot2\cdot3 \cdots 14 \times (29-14) \cdot (29-13) \cdots (29-1) \equiv 28! \equiv -1 \mod 29$$ oldugundan $$29 \mid (14!^2+1)$$ saglanir. 

Bunu daha da genellestirebiliriz: $4n+1$ asal ise $(4n+1)\mid \left((2n)!^2+1\right)$ saglanir. 

22, Nisan, 2016 Sercan (23,218 puan) tarafından  cevaplandı
22, Nisan, 2016 Sercan tarafından düzenlendi

Çok güzel Sercan hocam. Zihninize ve bilginize sağlık.

Hocam Wilsondan geleceği belliydi ama bu kadar basit ve güzel olacağı aklımın ucundan geçmezdi :) Tebrikler

...