$\mathbb{R}^3$ te uzaklık kavramı

0 beğenilme 0 beğenilmeme
59 kez görüntülendi

$a$ = $(x,y,z)$ ve $a_1$ = $(x_1 , y_1 , z_1)$,  $\mathbb{R}^3$ te iki nokta olsun. $d(a, a_1) = ?$ Daha genel  olarak $\mathbb{R}^n$ de mesafe? 

9, Nisan, 2015 Orta Öğretim Matematik kategorisinde Cagan Ozdemir (672 puan) tarafından  soruldu

1 cevap

0 beğenilme 0 beğenilmeme

$\mathbb{R}^n$'de birçok uzaklık fonksiyonu tanımlanabilir. Bunlardan bazıları şunlardır:

$x=(x_1,x_2,...,x_n)$ ve $y=(y_1,y_2,...,y_n)$ olmak üzere 

$$d_1(x,y)=[(x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2]^{\frac{1}{2}}$$ 

$$d_2(x,y)=\mid x_1-y_1\mid +\mid x_2-y_2\mid +...+ \mid x_n-y_n \mid$$


$$d_3(x,y)=max\{\mid x_1-y_1\mid , \mid x_2-y_2\mid ,..., \mid x_n-y_n \mid \}$$


ve daha yüzlercesi.

9, Nisan, 2015 murad.ozkoc (8,489 puan) tarafından  cevaplandı
Metrik uzayın koşullarını sağladığı sürece uzaklık fonksiyonu tanımlayabiliyoruz sanırım?

metrik zaten uzaklik fonksiyonu uzerine dayali degil mi? yani metrik kosulunu saglamasi demek icin ilk once elimizde bir uzaklik fonksiyonu diyebilecegimiz bir fonksiyonun olmasi gerekir. (konuya hakim olmadigim icin iddiali konusmak istemiyorum ama baska tanimi yokur herhalde metrik'in)

Metrik uzaydan önce metrik vardır zaten. "Metrik uzayın koşullarını..." yerine "Metrik olma şartlarını sağladığı sürece" demek istediniz sanırım Cagan Ozdemir.

********************************************************************

Metrik ile uzaklık fonksiyonu farklı şeyler mi? Hayır! 

"Uzaklık fonksiyonu diyebileceğimiz" derken "metrik olmaya aday" kastediliyorsa problem yok Sercan.

Metrik ile metrik uzayı kastediyorsanız da problem yok, ifâde tutarlı. 

Genel olarak Öklid uzayında "uzunluk" derken "doğal metrik" akla gelmekte (yukarıdaki ilk metrik).

Haklısınız, ben de konuya çok hakim değilim. Düzeltme için teşekkürler.

...