Tabansal yazılımın biricikliğinin ispatı.$k=a_{0}+a_{1}.b+a_{2}.b^2+........+a_{n}.b^n $

0 beğenilme 0 beğenilmeme
26 kez görüntülendi
$k \in\mathbb{Z}$      $n ,b \in\mathbb{N}$     ve     $  0\leq a_{0},a_{1},a_{2},a_{3},a_{4}........a_{n} < b$         
 $a_{0},a_{1},a_{2},a_{3},a_{4}........a_{n}\in\mathbb{N}$ olmak üzere
herhangi   $k$   tam sayısını   $b$   tabanında yazarken ;

$k=a_{0}+a_{1}.b+a_{2}.b^2+a_{3}.b^3+a_{4}.b^4+........+a_{n}.b^n $

Yorum:Bunu böyle yazınca insanın aklına hemen geliyor ,belki bir üstteki örneğin   $a_{4}.b^4$ bu sayıyı daha kücük kuvvetlerin katsayılarıyla oynayarakta yazabiliriz diye.

Soru:Bu yazılımın biricikliğini ispat ediniz.

25, Mart, 2016 Lisans Matematik kategorisinde Anıl Berkcan Türker (6,636 puan) tarafından  soruldu
25, Mart, 2016 Anıl Berkcan Türker tarafından düzenlendi

Kalanin biricik olacaginin ispatini biliyorsak bunu $n$ kere uygulayip bunu gosterebiliriz/

olup olmadıgından emın degılız ıspatlamak istiyoruz sizin dedıgınızı anlamadım n kere tabana alıp eşıt olup olmadıgınımı gosterıcegız?

$n$ dogal sayisini $q$ pozitif tam sayisina bolersen kalan $0\leq r<q$  biricik bir dogal sayi olur.

Bunu sirasiyla $b^n$, $b^{n-1}$, $\cdots$, $b$ icin uygularsan olay biter.

peki $m \in \mathbb{N}$ diye bir m alsak ve $m=n$ oldugunu varsayıp olmayana ergi yöntemi ile m küçüktür n ve m büyüktür n önermelerini çürütürsek  $m=n$  olmak zorunda bırakırsakta olmazmıdır?

Ne demek istedigini anlamadim. Bu arada yukarida $a_i \in \mathbb N$ demissin $0 \leq a_i <b$ olmali.

doğru o şartıda ekleyeyim.

...