İspatlayalım Bernoulli eşitsizligi $(1+x)^n>1+nx$

1 beğenilme 0 beğenilmeme
1,005 kez görüntülendi

$n>1$  ve tam , $x\neq0$   ve  $1+x>0$   için daima   $(1+x)^n>1+nx$    eşitsizliği neden câridir(doğrudur,kesindir).

23, Mart, 2016 Lisans Matematik kategorisinde Anil (6,713 puan) tarafından  soruldu

Bu soruyu ben sormustum sanki, cevabi da vardi.

İkişerkere hem burda hem "gugıl"da aradım bulamadım.

Ben de arayip bulamama olasiligima karsi hic aramadim :)

Sormamis da olabilirim. Sunu buldum bi, soruyla alakali: link

güzelmiş hemen ekledim favorilere:) buarada matematikle ilgili alternatıf sorusuna bakmalısınız bkz

2 Cevaplar

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

$x+1>0$ ve $x\neq 0$ olsun.

$n=2$ için $$(1+x)^2=1+2x+x^2>1+2x$$

$n=k$ için doğru olduğunu varsayıp $n=k+1$ için ispatlayalım.

$(1+x)^{k+1}=(1+x)^k\cdot(1+x)>(1+kx)\cdot(1+x)=1+(k+1)x+kx^2>1+(k+1)x$

23, Mart, 2016 murad.ozkoc (8,634 puan) tarafından  cevaplandı
30, Nisan, 2016 Anil tarafından seçilmiş

teşekkürler hocam.Peki bu yaptığınız gibi matematiksel indüksiyondan başka metodlada çözebilirmiyiz. sadece bir fikir verirseniz ben uğraşırım.

binom katsayiari.   

1 beğenilme 0 beğenilmeme

$1+x=y$ diyelim. Bu durumda $$(1+x)^n= 1+(y^n-1)$$ olur. Eger $y \ge 1$ ise (pozitiflik) $$y^n-1=(y-1)(y^{n-1}+\cdots+y+1)\ge n(y-1)=nx$$ olur. Eger $y<1$ ise (negatiflik) $$y^n-1=(y-1)(y^{n-1}+\cdots+y+1)\ge n(y-1)=nx$$ olur.

30, Nisan, 2016 Sercan (22,903 puan) tarafından  cevaplandı

mantıklı ve guzel tesekkurler.

...