$\dfrac {3^{2x}-2.3^{x+y}+3^{2y}} {3^{2x}-3^{x+y}}$ işleminin sonucu nedir ?

0 beğenilme 0 beğenilmeme
44 kez görüntülendi

parantez falan karıştırdım biraz

10, Mart, 2016 Orta Öğretim Matematik kategorisinde mosh36 (2,125 puan) tarafından  soruldu

$\frac{(3^x-3^y)^2}{3^x.(3^x-3^y)}$

1 cevap

1 beğenilme 0 beğenilmeme

$3^x=a, 3^y=b$ dersek $3^{2x}=a^2, 3^x.3^y=3^{x+y}=a.b$ ve $3^{2y}=b^2$ olur Bunları yerine yazarsak $\frac{a^2-2ab+b^2}{a^2-ab}$ olur.Pay kısmı tam kare şekline payda kısmı ise $a$ ortak parantezine alınırsa $\frac{(a-b)^2}{a.(a-b)}$ buradan $\frac{a-b}{a}$ yani $\frac{3^x-3^y}{3^x}$ olur.

10, Mart, 2016 Mustafa Kemal Özcan (1,013 puan) tarafından  cevaplandı
...